Skip to main content
Log in

Allelic variants in durum wheat (Triticum turgidum L. var. durum) DREB genes conferring tolerance to abiotic stresses

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

To identify potential and useful markers able to discriminate promising lines of durum wheat (Triticum turgidum L. var durum) tolerant to salt and drought stresses, nucleotide sequences of Dehydration-Responsive-Element Binding Factor (DREB) genes were used to design primers probed with High Resolution Melting technology for the identification of allelic variants. DREB1, DREB2, DREB3, DREB4 and DREB5 conserved regions corresponding to EREBP/AP2 domain and containing the conserved core sequence (5′-TACCGACAT-3′), the protein site directly involved in DNA recognition, were analyzed. The validated primers were probed on four lines of durum wheat differentially tolerant to salt and drought stresses treated with solutions containing different salt concentrations. Some SNPs mutations were identified in the highly tolerant durum cultivar Jennah Khetifa treated with the maximum salt concentration (1.5 M). The SNPs mutations identified were non-synonymous (nsSNPs) causing changes in peptide sequences. These concerned amino acid residues directly involved in the maintenance of protein geometry, the recognition of the specific cis-element, and the contacts between the protein and DNA. A validation of the found SNPs was carried out by analyzing the regressions between DREBs SNPs allelic variants and some morpho-physiological characters in a RIL population, deriving from a cross between the two durum wheat genotypes utilized for SNPs detection, grown under contrasting environments. Several phenotypical characters have been assessed in the progeny across all the localities evaluating the different performances under different stress levels and related with SNPs occurrence. Significant relations between SNPs variants and morpho-physiological characteristics were found in the progeny growth in very severe drought environments, suggesting a role of the identified SNPs in conferring a superior capability to adverse stress conditions and, at the same time, the key role of these genes in empowering salt tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen MD, Yamasaki M, Ohme-Takagi M, Tatenol M, Suzuki M (1998) A novel mode of DNA recognition by a β-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J 17:5484–5496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  • Chagnè D, Carlisle CM, Blond C, Volz RK, Whitworth CJ, Oraguzie NC, Crowhurst RN, Allan AC, Espley RV, Hellens RP, Gardiner SE (2007) Mapping a candidate gene (MdMYB10) for red flesh and foliage colour in apple. BMC Genom 8:212–218

    Article  Google Scholar 

  • Croxford AE, Rogers T, Caligari PDS, Wilkinson MJ (2008) High-resolution melt analysis to identify and map sequence-tagged site anchor points onto linkage maps: a white lupin (Lupinus albus) map as an exemplar. New Phytol 180:594–607

    Article  CAS  PubMed  Google Scholar 

  • Egawa C, Kobayashi F, Ishibashi M, Nakamura T, Nakamura C, Takumi S (2006) Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes Genet Syst 81:77–91

    Article  CAS  PubMed  Google Scholar 

  • Elliot RC, Betzner AS, Huttner E, Oakes MP, Tucker WQJ, Generates D, Perez P, Smyth DR (1996) AINTEGUMENTA, an APETALA2-like gene of Arabidopsis thaliana with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8:155–168

    Article  Google Scholar 

  • Flowers T (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  CAS  PubMed  Google Scholar 

  • Habora MEE, Eltayeb AE, Tsujimoto H, Tanaka K (2012) Identification of osmotic stress-responsive genes from Leymus mollis, a wild relative of wheat (Triticum aestivum L). Breed Sci 62:78–86. doi:10.101270/jsbbs6278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hessler TG, Thomson MJ, Benscher D, Nachit MM, Sorrells ME (2002) Association of a lipoxygenase locus, Lpx-B1, with variation in lipoxygenase activity in durum wheat seeds. Crop Sci 42(5):1695–1700

    Article  CAS  Google Scholar 

  • Ishitani M, Xiong L, Stevenson B, Zhu JK (1997) Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscissic acid-dependent and abscissic acid-independent pathways. Plant Cell 9:1935–1949

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jofuku KD, Den Boer BGW, Montagu VM, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211–1225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kennerson L, Warburton T, Nelis E, Brewer M, Polly P, De Jonghe P, Timmerman V, Nicholson GA (2007) Mutation scanning the GJB1 gene with high-resolution melting analysis: implication for mutation scanning of genes for Charcot-Marie-Tooth disease. Clin Chem 53:349–352

    Article  CAS  PubMed  Google Scholar 

  • Klucher KM, Chow H, Reiser L, Fisher RL (1996) The AINTEGUMENTA gene of Arabidopsis thaliana required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell 8:137–153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Knight H, Veale EL, Warren GJ, Knight MR (1999) The sfr 6 mutation in Arabidopsis suppresses low-temperature induction of genes dependent on the CRT/DRE sequence motif. Plant Cell 11:875–886

    PubMed Central  CAS  PubMed  Google Scholar 

  • Langridge P, Paltridge N, Fincher G (2006) Functional genomics of abiotic stress tolerance in cereals. Briefings In Functional Genomics And Proteomics 4:343–354

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Xiong L, Gong Z, Ishitani M, Stevenson B, Zhu JK (2001) The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Genes Dev 15:912–924

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2 with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu S, Wang X, Wang H, Xin H, Yang X, Yan J, Li J, Phan Tran L, Shinozaki K, Yamaguchi-Shinozaki K, Qin F (2013) Genome-wide analysis of ZmDREB genes and their association with natural variation in drought tolerance at seedling stage of Zea mays L. PLoS Genet. doi:10.1371/journal.pgen.1003790

    Google Scholar 

  • Marchini J, Howie B (2010) Genotype imputation for genome-wide association studies. Nat Rev Genet 11(7):499–511

    Article  CAS  PubMed  Google Scholar 

  • Mondini L, Nachit M, Porceddu E, Pagnotta MA (2011) HRM technology for the identification and characterization of INDEL and SNPs mutations in genes involved in drought and salt tolerance of durum wheat. Plant Genet Resour Charact Util 9(2):166–169

    Article  CAS  Google Scholar 

  • Mondini L, Nachit M, Porceddu E, Pagnotta MA (2012) Identification of SNP mutations in DREB1, HKT1, and WRKY1 genes involved in drought and salt stress tolerance in durum wheat (Triticum turgidum L var durum) OMICS. A J Integr Biol 16(4):178–187

    Article  CAS  Google Scholar 

  • Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, Eliby S, Shirley N, Langridge P, Lopato S (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol J 9(2):230–249

    Article  CAS  PubMed  Google Scholar 

  • Nachit M, Elouafi I, Pagnotta MA, El Saleh A, Iacono E, Labhilili M, Asbati A, Azrak M, Hazzam H, Benscher D, Khairallah M, Ribaut JM, Tanzarella O, Porceddu E, Sorrells ME (2001) Molecular linkage map for an intraspecific recombinant inbred population of durum wheat (Triticum turgidum L var durum). Theor App Genet 102:177–186

    Article  CAS  Google Scholar 

  • Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Okamuro JK, Caster B, Villaroel R, Montagu MV, Jofuku KD (1997) The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA 94:7076–7081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qin F, Sakuma Y, Li J, Liu Q, Li YQ, Shinozaki K, Yamaguchi-Shinozaki K (2004) Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol 45:1042–1052

    Article  CAS  PubMed  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646

    CAS  PubMed  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    Article  CAS  PubMed  Google Scholar 

  • Shahrhokhabadi K, Afshari RT, Alizade H, Afshari JT, Javadi GR (2008) Identification of DREB homologous genes in bread wheat via CODEHOP PCR primer design. Pak J Biol Sci 11(16):1979–1986

    Article  Google Scholar 

  • Shen YG, Zhang WK, He SJ, Zhang JS, Liu Q, Chen SY (2003) An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor Appl Genet 106(5):923–930

    CAS  PubMed  Google Scholar 

  • Weigel D (1995) The APETALA2 domain is related to a novel type of DNA binding domain. Plant Cell 7:388–389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilson K, Long D, Swinburne J, Coupland G (1996) A dissociation insertion causes a semi-dominant mutant that increases the expression of TINY, an Arabidosis gene related to APETALA2. Plant Cell 8:659–671

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1993) Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol Gen Genet 236(2–3):331–340

  • Zadoks JC, Chang TT, Konzak CF (1974) A Decimal Code for the Growth Stages of Cereals. Weed Res 14:415–421

    Article  Google Scholar 

  • Zhuang J, Chen JM, Yao QH, Xiong F, Sun CC, Zhou XR, Zhang J, Xiong AS (2011) Discovery and expression profile analysis of AP2/ERF family genes from Triticum aestivum. Mol Biol Rep 38(2):745–753

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Augusto Pagnotta.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 138 kb)

Supplementary material 2 (JPEG 154 kb)

Supplementary material 3 (JPEG 168 kb)

Supplementary material 4 (JPEG 255 kb)

Figure 1S Amino acid and nucleotide sequences of DREB1 gene of wheat. In the squarely boxes are indicated the amino acid changed and the dbSNPs identified

Figure 2S Amino acid and nucleotide sequences of DREB2 gene of wheat. In the squarely boxes are indicated the amino acid changed and the SNPs identified

Figure 3S Amino acid and nucleotide sequences of DREB4 gene of wheat. In the squarely boxes are indicated the amino acid changed and the SNPs identified

Figure 4S Amino acid and nucleotide sequences of DREB5 gene of wheat. In the squarely boxes are indicated the amino acid residues changed and the SNPs identified

Appendices

Appendix 1

Analysis of variance for morphological traits measured on seedling under hydroponic solution and factorial experiment of 3 genotypes, 3 salt concentrations, and 2 reps. Only ANOVA tables with significant interaction genotype × salt are here reported

Dependent variable: root growth

Source

Type III sum of squares

df

Mean square

F

Sig.

Intercept

415.681

1

415.681

1,662.722

0.000

Replicate

0.125

1

0.125

0.500

0.500

Salt molarity

466.361

2

233.181

932.722

0.000

Genotypes

5.361

2

2.681

10.722

0.005

Salt molaritya genotypes

3.722

4

0.931

3.722

0.050

Error

2.000

8

0.250

  

Total

893.250

18

   

Corrected total

477.569

17

   
  1. aR squared = 0.996 (adjusted R squared = 0.991)

Dependent variable: turgidity after 1hA

Source

Type III sum of squares

df

Mean square

F

Sig.

Intercept

696.889

1

696.889

3,136.000

0.000

Replicate

0.222

1

0.222

1.000

0.347

Salt molarity

77.778

2

38.889

175.000

0.000

Genotypes

19.444

2

9.722

43.750

0.000

Salt molaritya genotypes

9.889

4

2.472

11.125

0.002

Error

1.778

8

0.222

  

Total

806.000

18

   

Corrected Total

109.111

17

   
  1. aR squared = 0.984 (adjusted R squared = 0.965)

Dependent variable: turgidity after 5DA

Source

Type III sum of squares

df

Mean square

F

Sig.

Intercept

480.500

1

480.500

2,661.231

0.000

Replicate

0.056

1

0.056

0.308

0.594

Salt molarity

132.333

2

66.167

366.462

0.000

Genotypes

26.333

2

13.167

72.923

0.000

Salt molaritya genotypes

14.333

4

3.583

19.846

0.000

Error

1.444

8

0.181

  

Total

655.000

18

   

Corrected total

174.500

17

   
  1. aR squared = 0.992 (adjusted R squared = 0.982)

Appendix 2

Tables of the statistical significant ANOVA for the regressions between DREB variants and morphological traits on RIL populations grown under different drought climatic conditions

ANOVA of Dependent variable: GYKF

Model

Sum of squares

df

Mean square

F

Sig.

1

Regression

4,522,305.573

1

4,522,305.573

5.273

0.023a

Residual

149,225,429.528

174

857,617.411

Total

153,747,735.101

175

 
  1. aPredictors: (constant), DREB2A

ANOVA of Dependent variable: MDKF

Model

Sum of squares

df

Mean square

F

Sig.

1

Regression

10.131

1

10.131

4.265

0.040a

Residual

413.286

174

2.375

Total

423.417

175

 
  1. aPredictors: (constant), DREB2A

ANOVA of Dependent variable: SCLP

Model

 

Sum of squares

df

Mean square

F

Sig.

1

Regression

0.036

1

0.036

13.676

0.000a

Residual

0.457

174

0.003

Total

0.493

175

 
  1. aPredictors: (constant), DREB2A

ANOVA of Dependent variable: WI KF

Model

Sum of Squares

df

Mean Square

F

Sig.

1

Regression

0.005

1

0.005

3.790

0.053a

Residual

0.214

174

0.001

Total

0.218

175

 
  1. aPredictors: (constant), DREB2A

ANOVA of Dependent variable: GYBR

Model

Sum of squares

df

Mean square

F

Sig.

1

Regression

323,971.956

1

323,971.956

7.606

0.006a

Residual

7,410,973.431

174

42,591.801

Total

7,734,945.388

175

 
  1. aPredictors: (constant), DREB3B

ANOVA of Dependent variable: SCLP

Model

Sum of squares

df

Mean square

F

Sig.

1

Regression

0.428

1

0.428

13.143

0.000a

Residual

5.668

174

0.033

Total

6.097

175

 
  1. aPredictors: (constant), DREB3B

ANOVA of Dependent variable: PHLP

Model

Sum of squares

df

Mean square

F

Sig.

1

Regression

377.343

1

377.343

4.531

0.035a

Residual

14,490.816

174

83.281

Total

14,868.159

175

 
  1. aPredictors: (constant), DREB3B

ANOVA of Dependent variable: WIKF

Model

Sum of squares

df

Mean square

F

Sig.

1

Regression

0.007

1

0.007

4.047

0.046a

Residual

0.287

174

0.002

Total

0.294

175

 
  1. aPredictors: (constant), DREB3B

ANOVA of Dependent variable: TSINC

Model

Sum of squares

df

Mean square

F

Sig.

1

Regression

5.248

1

5.248

4.840

0.029a

Residual

188.646

174

1.084

Total

193.894

175

 
  1. aPredictors: (constant), DREB3B

ANOVA of Dependent variable: GYKF

Model

Sum of squares

df

Mean square

F

Sig.

1

Regression

5,481,397.505

1

5,481,397.505

5.226

0.023a

Residual

182,513,490.883

174

1,048,928.109

Total

187,994,888.388

175

 
  1. aPredictors: (constant), DREB4B

ANOVA of Dependent variable: GYRF

Model

Sum of squares

df

Mean square

F

Sig.

1

Regression

799,302.596

1

799,302.596

6.379

0.012a

Residual

21,803,721.199

174

125,308.743

Total

22,603,023.795

175

 
  1. aPredictors: (constant), DREB4B

ANOVA of Dependent variable: GYBR

Model

Sum of squares

df

Mean square

F

Sig.

1

Regression

210,605.420

1

210,605.420

4.870

0.029a

Residual

7,524,339.967

174

43,243.333

Total

7,734,945.388

175

 
  1. aPredictors: (constant), DREB4B

ANOVA of Dependent variable: GYINC

Model

Sum of squares

df

Mean square

F

Sig.

1

Regression

2,924,938.031

1

2,924,938.031

4.022

0.046a

Residual

126,531,644.735

174

727,193.361

Total

129,456,582.765

175

 
  1. aPredictors: (constant), DREB4B

ANOVA of Dependent variable: HDLP

Model

Sum of squares

df

Mean square

F

Sig.

1

Regression

30.308

1

30.308

4.778

0.030a

Residual

1,103.639

174

6.343

Total

1,133.946

175

 
  1. aPredictors: (constant), DREB4B

ANOVA of Dependent variable: HDRF

Model

Sum of squares

df

Mean square

F

Sig.

1

Regression

188.805

1

188.805

3.916

0.049a

Residual

8,389.393

174

48.215

Total

8,578.198

175

 
  1. aPredictors: (constant), DREB4B

ANOVA of Dependent variable: VIGBR

Model

Sum of squares

df

Mean square

F

Sig.

1

Regression

6.360

1

6.360

4.004

0.047a

Residual

276.388

174

1.588

Total

282.748

175

 
  1. aPredictors: (constant), DREB4B

ANOVA of Dependent variable: WI KF

Model

Sum of squares

df

Mean square

F

Sig.

1

Regression

0.012

1

0.012

3.915

0.049a

Residual

0.544

174

0.003

Total

0.556

175

 
  1. aPredictors: (constant), DREB4B

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondini, L., Nachit, M.M. & Pagnotta, M.A. Allelic variants in durum wheat (Triticum turgidum L. var. durum) DREB genes conferring tolerance to abiotic stresses. Mol Genet Genomics 290, 531–544 (2015). https://doi.org/10.1007/s00438-014-0933-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-014-0933-2

Keywords

Navigation