Skip to main content
Log in

Allele mining across DREB1A and DREB1B in diverse rice genotypes suggest a highly conserved pathway inducible by low temperature

  • RESEARCH ARTICLE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Low temperature stress is one of the major limiting factors affecting rice productivity in higher altitudes. DREB1A and DREB1B, are two transcription factors that have been reported to play key regulatory role in low temperature tolerance. In order to understand whether natural genetic variation in these two loci leads to cold tolerance or susceptibility, OsDREB1A and OsDREB1B were targeted across several rice genotypes showing differential response to low temperature. Expression data suggests induction of gene expression in shoots in response to low temperature in both tolerant and susceptible genotypes. Upon sequence analysis of 20 rice genotypes, eight nucleotide changes were identified including two in the coding region and six in the 5 'UTR. None of the discovered novel variations lie in the conserved region of the genes under study, thereby causing little or no changes in putative function of the corresponding proteins. In silico analysis using a diverse set of 400 O. sativa revealed much lower nucleotide diversity estimates across two DREB loci and one other gene (MYB2) involved in DREB pathway than those observed for other rice genes. None of the changes showed association with seedling stage cold tolerance, suggesting that nucleotide changes in DREB loci are unlikely to contribute to low temperature tolerance. So far, data concerning the physiological role and regulation of DREB1 in different genetic background are very limited; it is to be expected that they will be studied extensively in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Abe H., Yamaguchi-Shinozaki K., Urao T., lwasaki T., Hosokaw D. and Shinozaki K. 1997 Role of Arabidopsis MYC and MYB homologs in drought and abscisic acid-regulated gene expression. Plant Cell 9, 1859–1868.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Allen M. D., Yamasaki K., Ohme-Takagi M., Tateno M. and Suzuki M. 1998 A novel mode of DNA recognition by a b-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J. 18, 5484–5496.

    Article  Google Scholar 

  • Chin J. H., Gamuyao R., Dalid C., Bustamam M., Prasetiyono J., Moeljopawiro S. et al. 2011 Developing rice with high yield under phosphorus deficiency: Pup1 sequence to application. Plant Physiol. 156, 1202–1216.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chinnusamy V., Zhu J. and Zhu J. K. 2007 Cold stress regulation of gene expression in plants. Trends Plant Sci. 12, 444–451.

    Article  CAS  PubMed  Google Scholar 

  • Dash M., Challam C., Sahu T. K., Ghosh T., Tyagi W., Rai M. and Rao A. R. 2012 Identification and analysis of SNPs in DREB genes of rice cultivars grown in NE-hill region. National Conference on New Trends in Bioinformatics at IIT. New Delhi, India.

  • Dubouzet J. G., Sakuma Y., Ito Y., Kasuga M., Dubouzet E. G., Miura S. et al. 2003 OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J. 33, 751–763.

    Article  CAS  PubMed  Google Scholar 

  • Famoso A. N., Zhao K., Clark R. T., Tung C.-W., Wright M. H. et al. 2011 Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. PLoS Genet. 7, e1002221.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fowler S. and Thomashow M. F. 2002 Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14, 1675–1690.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hall T. A. 1999 BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.

    CAS  Google Scholar 

  • Higo K., Ugawa Y., Iwamoto M. and Korenaga T. 1999 Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res. 27, 297–300.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang X., Wei X., Sang T., Zhao Q., Feng Q., Zhao Y. et al. 2010 Genome-wide association studies of 14 agronomic traits in rice landraces. Nat. Genet. 42, 961–967.

    Article  CAS  PubMed  Google Scholar 

  • Jofuku K. D., denBoer B. G. W., Montagu M. V. and Okamuro J. K. 1994 Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6, 1211–1225.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Yamaguchi-Shinozaki K. and Shinozaki K. 1998 Transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10, 1391–1406.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Magnani E., Sjolander K. and Hake S. 2004 From endonucleases to transcription factors: evolution of the AP2 DNA binding domain in plants. Plant Cell 16, 2265–2277.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McKhann H. I., Gery C., Bérard A., Lévêque S., Zuther E., Hincha D. K. et al. 2008 Natural variation in CBF gene sequence, gene expression and freezing tolerance in the Versailles core collection of Arabidopsis thaliana. BMC Plant Biol. 8, 105.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mohanty B., Krishnan S. P. T., Swarup S. and Bajic V. B. 2005 Detection and preliminary analysis of motifs in promoters of anaerobically induced genes of different plant species. Ann. Bot. 96, 669–681.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mondini L., Nachit M., Porceddu E. and Pagnotta M. A. 2012 Identification of SNP mutations in DREB1, HKT1, and WRKY1 genes involved in drought and salt stress tolerance in durum wheat (Triticum turgidum L. var durum). OMICS 16, 178–187.

    Article  CAS  PubMed  Google Scholar 

  • Murray M. G. and Thompson W. F. 1980 Rapid isolation of high molecular weight plant DNA. Nucleic Acid Res. 8, 4321–4325.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakashima K., Ito Y. and Yamaguchi-Shinozaki K. 2009 Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol. 149, 88–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Narsai R., Castleden I. and Whelan J. 2010 Common and distinct organ and stress responsive transcriptomic patterns in Oryza sativa and Arabidopsis thaliana. BMC Plant Biol. 10, 262.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rabbani M. A., Maruyama K., Abe H., Khan M. A., Katsura K., Ito Y. et al. 2003 Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol. 133, 1755–1767.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sakuma Y., Liu Q., Dubouzet J. G., Abe H., Shinozaki K. and Yamaguchi-Shinozaki K. 2002 DNA-binding specificity of theERF/AP2 domain of Arabidopsis DREB’s, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem. Biophys. Res. Commun. 290, 998–1009.

    Article  CAS  PubMed  Google Scholar 

  • Seki M., Narusaka M., Ishida J. et al. 2002 Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J. 31, 279–292.

    Article  CAS  PubMed  Google Scholar 

  • Stockinger E. J., Gilmour S. J. and Thomashow M. F. 1997 Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA 94, 1035–1040.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Su C.-F., Wang Y.-C., Hsieh T.-H., Lu C.-A., Tseng T.-H. and Yu S.-M. 2010 A novel MYBS3-dependent pathway confers cold tolerance in rice. Plant Physiol. 153, 145–158.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao K., Wright M., Kimball J., Eizenga G., McClung A., Kovach M. et al. 2010 Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome. PLoS One 5, e10780.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tung C.-W., Zhao K., Wright K., Ali L., Jung J., Kimball J. et al. 2010 Development of a research platform for dissecting phenotype–genotype. Rice 4, 205–217.

    Article  Google Scholar 

  • Yano M., Katayose Y., Ashikari M., Yamanouchi U., Monna L., Fuse T. et al. 2000 Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12, 2473– 2483.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

This work is supported by NAIP (C30033/415101-036) and NFBSFARA (Phen-2015) to WT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WRICHA TYAGI.

Additional information

[Challam C., Ghosh T., Rai M. and Tyagi W. 2015 Allele mining across DREB1A and DREB1B in diverse rice genotypes suggest a highly conserved pathway inducible by low temperature. J. Genet. 94, xx–xx]

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 497 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

CHALLAM, C., GHOSH, T., RAI, M. et al. Allele mining across DREB1A and DREB1B in diverse rice genotypes suggest a highly conserved pathway inducible by low temperature. J Genet 94, 231–238 (2015). https://doi.org/10.1007/s12041-015-0507-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-015-0507-z

Keywords

Navigation