Skip to main content
Log in

Bacterial luciferase activity and the intracellular redox pool in Escherichia coli

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

In this study, we analyzed the activity of a bacterial luciferase (LuxAB of Vibrio fischeri) expressed under the control of a consensus-type promoter, lacUV5, in Escherichia coli, and found that activity declines abruptly upon entry into the stationary growth phase. Since this decline was reproducibly observed in strains cultured in various growth media, we refer to this phenomenon as ADLA (Abrupt Decline of Luciferase Activity) and define the time point when activity begins to decline as T 0. Because the levels of luciferase proteins (LuxA and LuxB) remained constant before and after T 0, ADLA cannot be due to the repression of luciferase gene expression. Further analyses suggested that a decline in the supply of intracellular reducing power for luciferase was responsible for ADLA. We also found that ADLA was alleviated or did not occur in several mutants deficient in nucleoid proteins, suggesting that ADLA is a genetically controlled process involved in intracellular redox flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Almiron M, Link AJ, Furlong D, Kolter R (1992) A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev 6:2646–2654

    Article  PubMed  CAS  Google Scholar 

  • Amit R, Oppenheim AB, Stavans J (2003) Increased bending rigidity of single DNA molecules by H-NS, a temperature and osmolarity sensor. Biophys J 84:2467–2473

    Article  PubMed  CAS  Google Scholar 

  • Azam TA, Iwata A, Nishimura A, Ueda S, Ishihama A (1999) Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J Bacteriol 181:6361–6370

    PubMed  CAS  Google Scholar 

  • Claret L, Rouviere-Yaniv J (1997) Variation in HU composition during growth of Escherichia coli: the heterodimer is required for long term survival. J Mol Biol 273:93–104

    Article  PubMed  CAS  Google Scholar 

  • Dersch P, Kneip S, Bremer E (1994) The nucleoid-associated DNA-binding protein H-NS is required for the efficient adaptation of Escherichia coli K-12 to a cold environment. Mol Gen Genet 245:255–259

    Article  PubMed  CAS  Google Scholar 

  • Dickson RC, Abelson J, Johnson P (1977) Nucleotide sequence changes produced by mutations in the lac promoter of Escherichia coli. J Mol Biol 25:65–75

    Article  Google Scholar 

  • Eisenstark A, Calcutt MJ, Becker-Hapak M, Ivanova A (1996) Role of Escherichia coli rpoS and associated genes in defense against oxidative damage. Free Rad Biol Med 21:975–993

    Article  PubMed  CAS  Google Scholar 

  • Engebrecht J, Nealson K, Silverman M (1983) Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell 32:773–781

    Article  PubMed  CAS  Google Scholar 

  • Escher A, Szalay AA (1993) GroE-mediated folding of bacterial luciferases in vivo. Mol Gen Genet 238:65–73

    PubMed  CAS  Google Scholar 

  • Escher A, O’Kane DJ, Szalay AA (1991) The β subunit polypeptide of Vibrio harveyi luciferase determines light emission at 42°C. Mol Gen Genet 230:385–93

    Article  PubMed  CAS  Google Scholar 

  • Fayet O, Louarn JM, Georgopoulos C (1986) Suppression of the Escherichia coli dnaA46 mutation by amplification of the groES and groEL genes. Mol Gen Genet 202:435–445

    Article  PubMed  CAS  Google Scholar 

  • Fontecave M, Coves J, Pierre JL (1994) Ferric reductases or flavin reductases? Biometals 7:3–8

    Article  PubMed  CAS  Google Scholar 

  • Hengge-Aronis R (1993) Survival of hunger and stress: the role of rpoS in early stationary phase gene regulation in E. coli. Cell 72:165–168

    Article  PubMed  CAS  Google Scholar 

  • Hengge-Aronis R (1996) Regulation of gene expression during entry into stationary phase. In: Neidhardt FC (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology. American Society for Microbiology Press, Washington DC, pp 1497–1508

    Google Scholar 

  • Hengge-Aronis R (2000) The general stress response in Escherichia coli . In: Storz G, Hengge-Aronis R (eds) Bacterial stress responses. American Society for Microbiology Press, Washington DC, pp 161–177

    Google Scholar 

  • Hengge-Aronis R (2002) Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66:373–395

    Article  PubMed  CAS  Google Scholar 

  • Hommais F, Krin E, Laurent-Winter C, Soutourina O, Malpertuy A, Le Caer JP, Danchin A, Bertin P (2001) Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Mol Microbiol 40:20–36

    Article  PubMed  CAS  Google Scholar 

  • Huisman GW, Siegele DA, Zambrano MM, Kolter R (1996) Morphological and physiological changes during stationary phase. In: Neidhardt FC (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology. American Society for Microbiology Press, Washington DC, pp 1672–1682

    Google Scholar 

  • Imlay JA, Fridovich I (1991) Assay of metabolic superoxide production in Escherichia coli. J Biol Chem 266:6957–6965

    PubMed  CAS  Google Scholar 

  • Ishihama A (1999) Modulation of the nucleoid, the transcription apparatus, and the translation machinery in bacteria for stationary phase survival. Genes Cells 4:135–143

    Article  PubMed  CAS  Google Scholar 

  • Jishage M, Ishihama A (1999) Transcription organization and in vivo role of the Escherichia coli rsd gene, encoding the regulator of RNA polymerase sigma D. J Bacteriol 181:3768–3776

    PubMed  CAS  Google Scholar 

  • Kajitani M, Ishihama A (1983) Determination of the promoter strength in the mixed transcription system: promoters of lactose, tryptophan and ribosomal protein L10 operons from Escherichia coli. Nucleic Acids Res 11:671–686

    Article  PubMed  CAS  Google Scholar 

  • Kano Y, Imamoto F (1990) Requirement of integration host factor (IHF) for growth of Escherichia coli deficient in HU protein. Gene 89:133–137

    Article  PubMed  CAS  Google Scholar 

  • Lange R, Hengge-Aronis R (1991) Identification of a central regulator of stationary-phase gene expression in Escherichia coli. Mol Microbiol 5:49–59

    Article  PubMed  CAS  Google Scholar 

  • Laurent-Winter C, Ngo S, Danchin A, Bertin P (1997) Role of Escherichia coli histone-like nucleoid-structuring protein in bacterial metabolism and stress response–identification of targets by two-dimensional electrophoresis. Eur J Biochem 244:767–773

    Article  PubMed  CAS  Google Scholar 

  • Lundin A (2000) Use of firefly luciferase in ATP-related assays of biomass, enzymes, and metabolites. Methods Enzymol 305:346–370

    PubMed  CAS  Google Scholar 

  • Meighen EA, Dunlap PV (1993) Physiological, biochemical and genetic control of bacterial bioluminescence. Adv Microb Physiol 34:1–67

    Article  PubMed  CAS  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Nanninga N, Woldringh C, Rouviere-Yaniv J (2001) Bacterial nucleoid, DNA replication, segregation, cell cycle and cell division. Biochimie 83:147–148

    Article  PubMed  CAS  Google Scholar 

  • Neidhardt FC, Bloch PL, Smith DF (1974) Culture medium for enterobacteria. J Bacteriol 119:736–747

    PubMed  CAS  Google Scholar 

  • Rogowsky PM, Close TJ, Chimera JA, Shaw JJ, Kado CI (1987) Regulation of the vir genes of Agrobacterium tumefaciens plasmid pTiC58. J Bacteriol 169:5101–5112

    PubMed  CAS  Google Scholar 

  • Schröder O, Wagner R (2002) The bacterial regulatory protein H-NS—a versatile modulator of nucleic acid structures. Biol Chem 383:945–960

    Article  PubMed  Google Scholar 

  • Spyrou G, Haggard-Ljungquist E, Krook M, Jornvall H, Nilsson E, Reichard P (1991) Characterization of the flavin reductase gene (fre) of Escherichia coli and construction of a plasmid for overproduction of the enzyme. J Bacteriol 173:3673–3679

    PubMed  CAS  Google Scholar 

  • Strange RE (1966) Stability of β-galactosidase in starved Escherichia coli. Nature 209:428–429

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Takayanagi Y, Fujita N, Ishihama A, Takahashi H (1993) Heterogeneity of the principal sigma factor in Escherichia coli: the rpoS gene product, σ38, is a second principal sigma factor of RNA polymerase in stationary-phase Escherichia coli. Proc Natl Acad Sci USA 90:3511–3515

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Handel K, Loewen PC, Takahashi H (1997) Identification and analysis of the rpoS-dependent promoter of katE, encoding catalase HPII in Escherichia coli. Biochim Biophys Acta 1352:161–166

    PubMed  CAS  Google Scholar 

  • Wada M, Kano Y, Ogawa T, Okazaki T, Imamoto F (1988) Construction and characterization of the deletion mutant of hupA and hupB genes in Escherichia coli. J Mol Biol 204:581–591

    Article  PubMed  CAS  Google Scholar 

  • Weinreich MD, Reznikoff WS (1992) Fis plays a role in Tn5 and IS50 transposition. J Bacteriol 174:4530–4537

    PubMed  CAS  Google Scholar 

  • Williams RM, Rimsky S (1997) Molecular aspects of the E. coli nucleoid protein, H-NS: a central controller of gene regulatory networks. FEMS Microbiol Lett 156:175–185

    Article  PubMed  CAS  Google Scholar 

  • Woodmansee AN, Imlay JA (2002) Reduced flavins promote oxidative DNA damage in non-respiring Escherichia coli by delivering electrons to intracellular free iron. J Biol Chem 277:34055–34066

    Article  PubMed  CAS  Google Scholar 

  • Xiao H, Kalman M, Ikehara K, Zemel S, Glaser G, Cashel M (1991) Residual guanosine 3′, 5′-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J Biol Chem 266:5980–5990

    PubMed  CAS  Google Scholar 

  • Yamada H, Yoshida T, Tanaka K, Sasakawa C, Mizuno T (1991) Molecular analysis of the Escherichia coli hns gene encoding a DNA-binding protein, which preferentially recognizes curved DNA sequences. Mol Gen Genet 230:332–336

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Ueguchi C, Yamada H, Mizuno T (1993) Function of the Escherichia coli nucleoid proteins, H-NS: molecular analysis of a subset of proteins whose expression is enhanced in a hns deletion mutant. Mol Gen Genet 237:113–122

    Article  PubMed  CAS  Google Scholar 

  • Zaslaver A, Mayo AE, Rosenberg R, Bashkin P, Sberro H, Tsalyuk M, Surette MG, Alon U (2004) Just-in-time transcription program in metabolic pathways. Nat Genet 36:486–491

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. Clarence I. Kado (U.C. Davis) and Takashi Yura for providing plasmids, Drs. Carl H. Johnson (Vanderbilt University) and Hideo Iwasaki (Nagoya University) for the antiserum against Vibrio LuxA, and Drs. Yasunobu Kano (Kyoto Pharmaceutical University), William S. Reznikoff (University of Wisconsin-Madison), Chiharu Ueguchi (Nagoya University) and Yasuhiko Sekine [Rikkyo (St. Paul) University] for E. coli strains. We also thank Dr. Hideo Takahashi for discussions. This study was supported in part by CREST of JST (to K.T.). The authors declare that this work was carried out in compliance with the current laws governing genetic experimentation in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Tanaka.

Additional information

Communicated by W. Goebel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koga, K., Harada, T., Shimizu, H. et al. Bacterial luciferase activity and the intracellular redox pool in Escherichia coli . Mol Genet Genomics 274, 180–188 (2005). https://doi.org/10.1007/s00438-005-0008-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-005-0008-5

Keywords

Navigation