Skip to main content
Log in

Expression of Barstar as a selectable marker in yeast mitochondria

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

We describe a new and potentially universal selection system for mitochondrial transformation based on bacterial genes, and demonstrate its feasibility in Saccharomyces cerevisiae. We first found that cytoplasmically synthesized Barnase, an RNase, interferes with mitochondrial gene expression when targeted to the organelle, without causing lethality when expressed at appropriate levels. Next, we synthesized a gene that uses the yeast mitochondrial genetic code to direct the synthesis of the specific Barnase inhibitor Barstar, and demonstrated that expression of this gene, BARSTM, integrated in mtDNA protects respiratory function from imported barnase. Finally, we showed that screening for resistance to mitochondrially targeted barnase can be used to identify rare mitochondrial transformants that had incorporated BARSTM in their mitochondrial DNA. The possibility of employing this strategy in other organisms is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3A, B.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7A, B.

Similar content being viewed by others

References

  • Baroux C, Blanvillain R, Gallois P (2001a) Paternally inherited transgenes are down-regulated but retain low activity during early embryogenesis in Arabidopsis. FEBS Lett 509:11–16

    Article  CAS  PubMed  Google Scholar 

  • Baroux C, Blanvillain R, Moore IR, Gallois P (2001b) Transactivation of Barnase under the AtLTP1 promoter affects the basal pole of the embryo and shoot development of the adult plant in Arabidopsis. Plant J 28:503–515

    Article  CAS  PubMed  Google Scholar 

  • Bateman JM, Purton S (2000) Tools for chloroplast transformation in Chlamydomonas: expression vectors and a new dominant selectable marker. Mol Gen Genet 263:404–410

    Article  CAS  PubMed  Google Scholar 

  • Boeke JD, Lacroute F, Fink GR (1984) A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 19:345–346

    Google Scholar 

  • Bonnefoy N, Fox TD (2001) Genetic transformation of Saccharomyces cerevisiae mitochondria. Methods Cell Biol 65:381–396

    CAS  PubMed  Google Scholar 

  • Boynton JE, Gillham NW (1993) Chloroplast transformation in Chlamydomonas. Methods Enzymol 217:510–536

    CAS  PubMed  Google Scholar 

  • Boynton JE, Gillham NW (1996) Genetics and transformation of mitochondria in the green alga Chlamydomonas. Methods Enzymol 264:279–296

    CAS  PubMed  Google Scholar 

  • Cameron VL, Fox TD, Poyton RO (1989) Isolation and characterization of a yeast strain carrying a mutation in the mitochondrial promoter for COX2. J Biol Chem 264:13391–13394

    CAS  PubMed  Google Scholar 

  • Cho SH, Chung YS, Cho SK, Rim YW, Shin JS (1999) Particle bombardment-mediated transformation and GFP expression in the moss Physcomitrella patens. Mol Cells 28:14–19

    Google Scholar 

  • Cohen JS, Fox TD (2001) Expression of Green Fluorescent Protein from a recoded gene inserted into Saccharomyces cerevisiae mitochondrial DNA. Mitochondrion 1:181–189

    Article  CAS  Google Scholar 

  • Contamine V, Picard M (2000) Maintenance and integrity of the mitochondrial genome: a plethora of nuclear genes in the budding yeast. Microbiol Mol Biol Rev 64:281–315

    CAS  PubMed  Google Scholar 

  • Daniell H, Muthukumar B, Lee SB (2001) Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection. Curr Genet 39:109–116

    CAS  PubMed  Google Scholar 

  • Doetsch NA, Favreau MR, Kuscuoglu N, Thompson MD, Hallick RB (2001) Chloroplast transformation in Euglena gracilis: splicing of a group III twintron transcribed from a transgenic psbK operon. Curr Genet 39:49–60

    Article  CAS  PubMed  Google Scholar 

  • Dujon B (1981) Mitochondrial genetics and functions. In: Strathern JN, Jones EW, Broach JR (eds) The Molecular biology of the yeast Saccharomyces: life cycle and inheritance. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., pp 505–635

  • Dunstan HM, Green-Willms NS, Fox TD (1997). In vivo analysis of Saccharomyces cerevisiae COX2 mRNA 5′-untranslated leader functions in mitochondrial translation initiation and translational activation. Genetics 147:87–100

    Google Scholar 

  • Fangman WL, Henly JW, Brewer BJ (1990) RPO41-independent maintenance of ρ− mitochondrial DNA in Saccharomyces cerevisiae. Mol Cell Biol 10:10–15

    CAS  PubMed  Google Scholar 

  • Fox TD (1987) Natural variation in the genetic code. Annu Rev Genet 21:67–91

    Article  CAS  PubMed  Google Scholar 

  • Fox TD, Sanford JC, McMullin TW (1988) Plasmids can stably transform yeast mitochondria lacking endogenous mtDNA. Proc Natl Acad Sci USA 85:7288–7292

    CAS  PubMed  Google Scholar 

  • Golds T, Maliga P, Koop H-U (1993) Stable plastid transformation in PEG-treated protoplasts of Nicotiana tabacum. Biotechnology 11:95–97

    CAS  Google Scholar 

  • Hartley RW (1988) Barnase and Barstar. Expression of its cloned inhibitor permits expression of a cloned ribonuclease. J Mol Biol 202:913–915.

    CAS  PubMed  Google Scholar 

  • Hoffman CS, Winston F (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272

    CAS  PubMed  Google Scholar 

  • Hou BK, Zhou YH, Wan LH, Zhang ZL, Shen GF, Chen ZH, Hu ZM (2003) Chloroplast transformation in oilseed rape. Transgenic Res 12:111–114

    CAS  Google Scholar 

  • Johnston SA, Anziano PQ, Shark K, Sanford JC, Butow RA (1988) Mitochondrial transformation in yeast by bombardment with microprojectiles. Science 240:1538–1541

    CAS  PubMed  Google Scholar 

  • Lapidot M, Raveh D, Sivan A, Arad SM, Shapira M (2002) Stable chloroplast transformation of the unicellular red alga Porphyridium species. Plant Physiol 129:7–12

    CAS  Google Scholar 

  • Li H, Zassenhaus HP (2000) Phosphorylation is required for high-affinity binding of DBP, a yeast mitochondrial site-specific RNA binding protein. Curr Genet 37:356–363

    Article  CAS  PubMed  Google Scholar 

  • Mulero JJ, Fox TD (1993) Alteration of the Saccharomyces cerevisiae COX2 mRNA 5′-untranslated leader by mitochondrial gene replacement and functional interaction with the translational activator protein PET111. Mol Biol Cell 4:1327–1335

    CAS  PubMed  Google Scholar 

  • Mumberg D, Muller R, Funk M (1994) Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res 22:5767–5768

    CAS  PubMed  Google Scholar 

  • Neff NF, Thomas JH, Grisafi P, Botstein D (1983) Isolation of a β-tubulin gene from yeast and demonstration of its essential function in vivo. Cell 33:211–219

    CAS  PubMed  Google Scholar 

  • Randolph-Anderson BL, Boynton JE, Gillham NW, Harris EH, Johnson AM, Dorthu M-P, Matagne RF (1993) Further characterization of the respiratory deficient dum-1 mutation of Chlamydomonas reinhardtii and its use as a recipient for mitochondrial transformation. Mol Gen Genet 236:235–244

    CAS  PubMed  Google Scholar 

  • Rose MD, Winston F, Hieter P (1988) Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

  • Ruf S, Hermann M, Berger IJ, Carrer H, Böck R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19:870–875

    CAS  PubMed  Google Scholar 

  • Sidorov VA, Kasten D, Pang SZ, Hajdukiewicz PT, Staub JM, Nehra NS (1999) Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J 19:209–216

    Article  CAS  PubMed  Google Scholar 

  • Sikdar SR, Serino G, Chaudhuri S, Maliga P (1998) Plastid transformation in Arabidopsis thaliana. Plant Cell Rep 18:20–24

    Article  CAS  Google Scholar 

  • Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    CAS  PubMed  Google Scholar 

  • Steele DF, Butler CA, Fox TD (1996) Expression of a recoded nuclear gene inserted into yeast mitochondrial DNA is limited by mRNA-specific translational activation. Proc Natl Acad Sci USA 93:5253–5257

    Article  CAS  PubMed  Google Scholar 

  • Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90:913–917

    CAS  PubMed  Google Scholar 

  • Thorsness PE, Fox TD (1993) Nuclear mutations in Saccharomyces cerevisiae that affect the escape of DNA from mitochondria to the nucleus. Genetics 134:21–28

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Institut National de la Recherche Agronomique (INRA, France) and a grant from US National Institutes of Health (GM29362). We thank N. Bonnefoy for helpful discussions and technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Mireau.

Additional information

Communicated by R. G. Herrmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mireau, H., Arnal, N. & Fox, T.D. Expression of Barstar as a selectable marker in yeast mitochondria. Mol Gen Genomics 270, 1–8 (2003). https://doi.org/10.1007/s00438-003-0879-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-003-0879-2

Keywords

Navigation