Skip to main content

Biolistic Transformation of Chlamydomonas reinhardtii and Saccharomyces cerevisiae Mitochondria

  • Protocol
  • First Online:
Mitochondrial DNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2615))

Abstract

Chlamydomonas reinhardtii and Saccharomyces cerevisiae are currently the two micro-organisms in which genetic transformation of mitochondria is routinely performed. The generation of a large variety of defined alterations as well as the insertion of ectopic genes in the mitochondrial genome (mtDNA) are possible, especially in yeast. Biolistic transformation of mitochondria is achieved through the bombardment of microprojectiles coated with DNA, which can be incorporated into mtDNA thanks to the highly efficient homologous recombination machinery present in S. cerevisiae and C. reinhardtii organelles. Despite a low frequency of transformation, the isolation of transformants in yeast is relatively quick and easy, since several natural or artificial selectable markers are available, while the selection in C. reinhardtii remains long and awaits new markers. Here, we describe the materials and techniques used to perform biolistic transformation, in order to mutagenize endogenous mitochondrial genes or insert novel markers into mtDNA. Although alternative strategies to edit mtDNA are being set up, so far, insertion of ectopic genes relies on the biolistic transformation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonnefoy N, Remacle C, Fox TD (2007) Genetic transformation of Saccharomyces cerevisiae and Chlamydomonas reinhardtii mitochondria. Methods Cell Biol 80:525–548. https://doi.org/10.1016/S0091-679X(06)80026-9

    Article  CAS  PubMed  Google Scholar 

  2. Boynton JE, Gillham NW (1993) Chloroplast transformation in Chlamydomonas. Methods Enzymol 217:510–536. https://doi.org/10.1016/0076-6879(93)17087-l

    Article  CAS  PubMed  Google Scholar 

  3. Lee H, Lee S, Baek G, Kim A, Kang B-C, Seo H, Kim J-S (2021) Mitochondrial DNA editing in mice with DddA-TALE fusion deaminases. Nat Commun 12:1190. https://doi.org/10.1038/s41467-021-21464-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li S, Chang L, Zhang J (2021) Advancing organelle genome transformation and editing for crop improvement. Plant Commun 2:100141. https://doi.org/10.1016/j.xplc.2021.100141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhou J, Liu L, Chen J (2010) Mitochondrial DNA heteroplasmy in Candida glabrata after mitochondrial transformation. Eukaryot Cell 9:806–814. https://doi.org/10.1128/EC.00349-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Randolph-Anderson BL, Boynton JE, Gillham NW, Harris EH, Johnson AM, Dorthu MP, Matagne RF (1993) Further characterization of the respiratory deficient dum-1 mutation of Chlamydomonas reinhardtii and its use as a recipient for mitochondrial transformation. Mol Gen Genet 236:235–244. https://doi.org/10.1007/BF00277118

    Article  CAS  PubMed  Google Scholar 

  7. Matagne RF, Michel-Wolwertz MR, Munaut C, Duyckaerts C, Sluse F (1989) Induction and characterization of mitochondrial DNA mutants in Chlamydomonas reinhardtii. J Cell Biol 108:1221–1226. https://doi.org/10.1083/jcb.108.4.1221

    Article  CAS  PubMed  Google Scholar 

  8. Yamasaki T, Kurokawa S, Watanabe KI, Ikuta K, Ohama T (2005) Shared molecular characteristics of successfully transformed mitochondrial genomes in Chlamydomonas reinhardtii. Plant Mol Biol 58:515–527. https://doi.org/10.1007/s11103-005-7081-3

    Article  CAS  PubMed  Google Scholar 

  9. Remacle C, Cardol P, Coosemans N, Gaisne M, Bonnefoy N (2006) High-efficiency biolistic transformation of Chlamydomonas mitochondria can be used to insert mutations in complex I genes. Proc Natl Acad Sci U S A 103:4771–4776. https://doi.org/10.1073/pnas.0509501103

  10. Larosa V, Coosemans N, Motte P, Bonnefoy N, Remacle C (2012) Reconstruction of a human mitochondrial complex I mutation in the unicellular green alga Chlamydomonas. Plant J 70:759–768. https://doi.org/10.1111/j.1365-313X.2012.04912.x

    Article  CAS  PubMed  Google Scholar 

  11. Salinas T, Duby F, Larosa V, Coosemans N, Bonnefoy N, Motte P, Maréchal-Drouard L, Remacle C (2012) Co-evolution of mitochondrial tRNA import and codon usage determines translational efficiency in the green alga Chlamydomonas. PLoS Genet 8:e1002946. https://doi.org/10.1371/journal.pgen.1002946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hu Z, Fan Z, Zhao Z, Chen J, Li J (2012) Stable expression of antibiotic-resistant gene ble from Streptoalloteichus hindustanus in the mitochondria of Chlamydomonas reinhardtii. PLoS One 7:e35542. https://doi.org/10.1371/journal.pone.0035542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hu Z, Zhao Z, Wu Z, Fan Z, Chen J, Wu J, Li J (2011) Successful expression of heterologous egfp gene in the mitochondria of a photosynthetic eukaryote Chlamydomonas reinhardtii. Mitochondrion 11:716–721. https://doi.org/10.1016/j.mito.2011.05.012

    Article  CAS  PubMed  Google Scholar 

  14. Johnston S, Anziano P, Shark K, Sanford J, Butow R (1988) Mitochondrial transformation in yeast by bombardment with microprojectiles. Science 240:1538–1541. https://doi.org/10.1126/science.2836954

    Article  CAS  PubMed  Google Scholar 

  15. Fox TD, Sanford JC, McMullin TW (1988) Plasmids can stably transform yeast mitochondria lacking endogenous mtDNA. Proc Natl Acad Sci 85:7288–7292. https://doi.org/10.1073/pnas.85.19.7288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yoo B-C, Yadav NS, Orozco EM, Sakai H (2020) Cas9/gRNA-mediated genome editing of yeast mitochondria and Chlamydomonas chloroplasts. PeerJ 8:e8362. https://doi.org/10.7717/peerj.8362

  17. Thorsness PE, Fox TD (1993) Nuclear mutations in Saccharomyces cerevisiae that affect the escape of DNA from mitochondria to the nucleus. Genetics 134:21–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Steele DF, Butler CA, Fox TD (1996) Expression of a recoded nuclear gene inserted into yeast mitochondrial DNA is limited by mRNA-specific translational activation. Proc Natl Acad Sci U S A 93:5253–5257. https://doi.org/10.1073/pnas.93.11.5253

  19. Thorsness PE, Fox TD (1990) Escape of DNA from mitochondria to the nucleus in Saccharomyces cerevisiae. Nature 346:376–379. https://doi.org/10.1038/346376a0

    Article  CAS  PubMed  Google Scholar 

  20. Cohen JS, Fox TD (2001) Expression of green fluorescent protein from a recoded gene inserted into Saccharomyces cerevisiae mitochondrial DNA. Mitochondrion 1:181–189. https://doi.org/10.1016/S1567-7249(01)00012-5

    Article  CAS  PubMed  Google Scholar 

  21. Saracco SA, Fox TD (2002) Cox18p is required for export of the mitochondrially encoded Saccharomyces cerevisiae Cox2p C-tail and interacts with Pnt1p and Mss2p in the inner membrane. MBoC 13:1122–1131. https://doi.org/10.1091/mbc.01-12-0580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mireau H, Arnal N, Fox TD (2003) Expression of Barstar as a selectable marker in yeast mitochondria. Mol Gen Genomics 270:1–8. https://doi.org/10.1007/s00438-003-0879-2

    Article  CAS  Google Scholar 

  23. Golik P, Bonnefoy N, Szczepanek T, Saint-Georges Y, Lazowska J (2003) The Rieske FeS protein encoded and synthesized within mitochondria complements a deficiency in the nuclear gene. Proc Natl Acad Sci 100:8844–8849. https://doi.org/10.1073/pnas.1432907100

  24. Yogev O, Yogev O, Singer E, Shaulian E, Goldberg M, Fox TD, Pines O (2010) Fumarase: a mitochondrial metabolic enzyme and a cytosolic/nuclear component of the DNA damage response. PLoS Biol 8:e1000328. https://doi.org/10.1371/journal.pbio.1000328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Funes S, Westerburg H, Jaimes-Miranda F, Woellhaf MW, Aguilar-Lopez JL, Janßen L, Bonnefoy N, Kauff F, Herrmann JM (2013) Partial suppression of Oxa1 mutants by mitochondria-targeted signal recognition particle provides insights into the evolution of the cotranslational insertion systems. FEBS J 280:904–915. https://doi.org/10.1111/febs.12082

    Article  CAS  PubMed  Google Scholar 

  26. Suhm T, Habernig L, Rzepka M, Kaimal JM, Andréasson C, Buettner S, Ott M (2018) A novel system to monitor mitochondrial translation in yeast. Microb Cell 5:158–164. https://doi.org/10.15698/mic2018.03.621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Harris EH (1989) The Chlamydomonas sourcebook: a comprehensive guide to biology and laboratory use. Academic Press, San Diego

    Google Scholar 

  28. Hill JE, Myers AM, Koerner TJ, Tzagoloff A (1986) Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2:163–167. https://doi.org/10.1002/yea.320020304

    Article  CAS  PubMed  Google Scholar 

  29. Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bonnefoy N, Fox TD (2000) In vivo analysis of mutated initiation codons in the mitochondrial COX2 gene of Saccharomyces cerevisiae fused to the reporter gene ARG8m reveals lack of downstream reinitiation. Mol Gen Genet 262:1036–1046. https://doi.org/10.1007/pl00008646

    Article  CAS  PubMed  Google Scholar 

  31. Dorthu MP, Remy S, Michel-Wolwertz MR, Colleaux L, Breyer D, Beckers MC, Englebert S, Duyckaerts C, Sluse FE, Matagne RF (1992) Biochemical, genetic and molecular characterization of new respiratory-deficient mutants in Chlamydomonas reinhardtii. Plant Mol Biol 18:759–772. https://doi.org/10.1007/BF00020017

    Article  CAS  PubMed  Google Scholar 

  32. Remacle C, Baurain D, Cardol P, Matagne RF (2001) Mutants of Chlamydomonas reinhardtii deficient in mitochondrial complex I: characterization of two mutations affecting the nd1 coding sequence. Genetics 158:1051–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bonnefoy N, Fox TD (2001) Genetic transformation of Saccharomyces cerevisiae mitochondria. In: Methods Cell Biol Elsevier, pp. 381–396

    Google Scholar 

  34. Neff NF, Thomas JH, Grisafi P, Botstein D (1983) Isolation of the β-tubulin gene from yeast and demonstration of its essential function in vivo. Cell 33:211–219. https://doi.org/10.1016/0092-8674(83)90350-1

    Article  CAS  PubMed  Google Scholar 

  35. Thomas BJ, Rothstein R (1989) Elevated recombination rates in transcriptionally active DNA. Cell 56:619–630. https://doi.org/10.1016/0092-8674(89)90584-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to Claudia Serot for generating the supplementary video showing the bombardment procedure, including filming, choosing the sequences and editing the video clip. N. B. is supported by the Centre National pour la Recherche Scientifique, and C.R. is supported by Fonds National de la Recherche scientifique (FNRS, CDR J.0175.20) and Fonds Wetenschappelijk Onderzoek—Vlaanderen (FWO) and FNRS under EOS Project No. 30829584.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Remacle .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Example of bombardment procedure (MP4 86151 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bonnefoy, N., Remacle, C. (2023). Biolistic Transformation of Chlamydomonas reinhardtii and Saccharomyces cerevisiae Mitochondria. In: Nicholls, T.J., Uhler, J.P., Falkenberg, M. (eds) Mitochondrial DNA. Methods in Molecular Biology, vol 2615. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2922-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2922-2_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2921-5

  • Online ISBN: 978-1-0716-2922-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics