Skip to main content
Log in

Dantrolene improves in vitro structural changes induced by serum from Trypanosoma cruzi-infected mice

  • Short Communication
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Dystrophin, an important protein of the dystrophin-glycoprotein complex, has been implicated in the pathogenesis of experimental Chagas disease. It is important for the maintenance of cell shape and contraction force transmission. Dystrophin loss has been related to end-stage cardiac myopathies and proposed as a common route for myocardial dysfunction and progression to advanced heart failure. Evidence suggests that calpains, calcium-dependent proteases, digest dystrophin when the calcium concentration is compatible with their activation. The objective of this in vitro study was to test the hypothesis that dantrolene, a calcium channel blocker, improves structural changes induced by serum from Trypanosoma cruzi-infected mice. Cultured neonatal cardiac myocytes were incubated with serum from T. cruzi-infected mice and treated with dantrolene for 24 h. Immunofluorescence and immunoblotting were performed to evaluate dystrophin and calpain-1 protein expression. The levels of dystrophin decreased 13 % and calpain increased 17 % after incubation of cultured neonatal cardiac myocytes with serum from T. cruzi-infected mice. The treatment with dantrolene restored the dystrophin and calpain levels near control levels. Our results demonstrate that alterations in calcium homeostasis in cardiac myocytes are responsible, in part, for cardiac structural changes in experimentally induced T. cruzi myocarditis and that calpain inhibitors may be beneficial in Chagasic heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Belcastro AN, Gilchrist JS, Scrubb JA, Arthur G (1994) Calcium-supported calpain degradation rates for cardiac myofibrils in diabetes. Mol Cell Biochem 135:51–60

    Article  CAS  PubMed  Google Scholar 

  • Belcastro AN, Albisser TA, Littlejohn JA (1996) Role of calcium-activated neutral protease (calpain) with diet and exercise. Can J Appl Physiol 21:328–346

    Article  CAS  PubMed  Google Scholar 

  • Campos EC, O’Connell JL, Malvestio LM, Romano MM, Ramos SG, Celes MR, Prado CM, Simões MV, Rossi MA (2011) Calpain-mediated dystrophin disruption may be a potential structural culprit behind chronic doxorubicin-induced cardiomyopathy. Eur J Pharmacol 670:541–553

    Article  CAS  PubMed  Google Scholar 

  • Campos EC, Romano MM, Prado CM, Rossi MA (2008) Isoproterenol induces primary loss of dystrophin in rat hearts: correlation with myocardial injury. Int J Exp Pathol 89:367–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Celes MR, Malvestio LM, Suadicani SO, Prado CM, Figueiredo MJ, Campos EC, Freitas AC, Spray DC, Tanowitz HB, da Silva JS, Rossi MA (2013) Disruption of calcium homeostasis in cardiomyocytes underlies cardiac structural and functional changes in severe sepsis. PLoS One 8:e68809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F, Chang R, Trivedi M, Capetanaki Y, Cryns VL (2003) Caspase proteolysis of desmin produces a dominant-negative inhibitor of intermediate filaments and promotes apoptosis. J Biol Chem 278:6848–6853

    Article  CAS  PubMed  Google Scholar 

  • Cottin P, Poussard S, Mornet D, Brustis JJ, Mohammadpour M, Leger J, Ducastaing A (1992) In vitro digestion of dystrophin by calcium-dependent proteases, calpains I and II. Biochimie 74:565–570

    Article  CAS  PubMed  Google Scholar 

  • Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801

    Article  CAS  PubMed  Google Scholar 

  • Duncan DJ, Yang Z, Hopkins PM, Steele DS, Harrison SM (2010) TNF-alpha and IL-1beta increase Ca2+ leak from the sarcoplasmic reticulum and susceptibility to arrhythmia in rat ventricular myocytes. Cell Calcium 47:378–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hack AA, Lam MY, Cordier L, Shoturma DI, Ly CT, Hadhazy MA, Hadhazy MR, Sweeney HL, McNally EM (2000) Differential requirement for individual sarcoglycans and dystrophin in the assembly and function of the dystrophin-glycoprotein complex. J Cell Sci 113:2535–2544

    CAS  PubMed  Google Scholar 

  • Kawada T, Masui F, Tezuka A, Ebisawa T, Kumagai H, Nakazawa M, Toyo-Oka T (2005) A novel scheme of dystrophin disruption for the progression of advanced heart failure. Biochim Biophys Acta 1751:73–81

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Yano M, Suetomi T, Ono M, Tateishi H, Mochizuki M, Xu X, Uchinoumi H, Okuda S, Yamamoto T, Koseki N, Kyushiki H, Ikemoto N, Matsuzaki M (2009) Dantrolene, a therapeutic agent for malignant hyperthermia, markedly improves the function of failing cardiomyocytes by stabilizing interdomain interactions within the ryanodine receptor. J Am Coll Cardiol 53:1993–2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Boriek AM (2003) Mechanical stress activates the nuclear factor kappa B pathway in skeletal muscle fibers: a possible role in Duchenne muscular dystrophy. FASEB J 17:386–396

    Article  CAS  PubMed  Google Scholar 

  • Lapidos KA, Kakkar R, McNally EM (2004) The dystrophin glycoprotein complex: signaling strength and integrity for the sarcolemma. Circ Res 94:1023–1031

    Article  CAS  PubMed  Google Scholar 

  • Lim CC, Zuppinger C, Guo X, Kuster GM, Helmes M, Eppenberger HM, Suter TM, Liao R, Sawyer DB (2004) Anthracyclines induce calpain-dependent titin proteolysis and necrosis in cardiomyocytes. J Biol Chem 279:8290–8299

    Article  CAS  PubMed  Google Scholar 

  • Malvestio LM, Celes MR, Milanezi C, Silva JS, Jelicks LA, Tanowitz HB, Rossi MA, Prado CM (2014) Role of dystrophin in acute Trypanosoma cruzi infection. Microbes Infect 16:768–777

    Article  CAS  PubMed  Google Scholar 

  • Mavrogeni S, Papavasiliou A, Spargias K, Constandoulakis P, Papadopoulos G, Karanasios E, Georgakopoulos D, Kolovou G, Demerouti E, Polymeros S, Kaklamanis L, Magoutas A, Papadopoulou E, Markussis V, Cokkinos DV (2010) Myocardial inflammation in Duchenne muscular dystrophy as a precipitating factor for heart failure: a prospective study. BMC Neurol 10:33–40

    Article  PubMed  PubMed Central  Google Scholar 

  • Nozaki K, Das A, Ray SK, Banik NL (2010) Calpain inhibition attenuates intracellular changes in muscle cells in response to extracellular inflammatory stimulation. Exp Neurol 225:430–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nozaki K, Das A, Ray SK, Banik NL (2011) Calpeptin attenuated apoptosis and intracellular inflammatory changes in muscle cells. J Neurosci Res 89:536–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panis C, Mazzuco TL, Costa CZ, Victorino VJ, Tatakihara VL, Yamauchi LM, Yamada-Ogatta SF, Cecchini R, Rizzo LV, Pinge-Filho P (2011) Trypanosoma cruzi: effect of the absence of 5-lipoxygenase (5-LO)-derived leukotrienes on levels of cytokines, nitric oxide and iNOS expression in cardiac tissue in the acute phase of infection in mice. Exp Parasitol 127:58–65

    Article  CAS  PubMed  Google Scholar 

  • Prado CM, Celes MR, Malvestio LM, Campos EC, Silva JS, Jelicks LA, Tanowitz HB, Rossi MA (2012) Early dystrophin disruption in the pathogenesis of experimental chronic Chagas cardiomyopathy. Microbes Infect 14:59–68

    Article  CAS  PubMed  Google Scholar 

  • Rizzuto R, Pozzan T (2003) When calcium goes wrong: genetic alterations of a ubiquitous signaling route. Nat Genet 34:135–141

    Article  CAS  PubMed  Google Scholar 

  • Sorimachi H, Ono Y (2012) Regulation and physiological roles of the calpain system in muscular disorders. Cardiovasc Res 96:11–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starobinas N, Russo M, Minoprio P, Hontebeyrie-Joskowicz M (1991) Is TNF alpha involved in early susceptibility of Trypanosoma cruzi-infected C3H/He mice? Res Immunol 142:117–122

    Article  CAS  PubMed  Google Scholar 

  • Tidball JG (2005) Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol 288:R345–R353

    Article  CAS  PubMed  Google Scholar 

  • Toyo-Oka T, Kawada T, Nakata J, Xie H, Urabe M, Masui F, Ebisawa T, Tezuka A, Iwasawa K, Nakajima T, Uehara Y, Kumagai H, Kostin S, Schaper J, Nakazawa M, Ozawa K (2004) Translocation and cleavage of myocardial dystrophin as a common pathway to advanced heart failure: a scheme for the progression of cardiac dysfunction. Proc Natl Acad Sci U S A 101:7381–7385

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitehead NP, Yeung EW, Allen DG (2006) Muscle damage in mdx (dystrophic) mice: role of calcium and reactive oxygen species. Clin Exp Pharmacol Physiol 33:657–662

    Article  CAS  PubMed  Google Scholar 

  • Willis MS, Schisler JC, Portbury AL, Peterson C (2009) Build it up-tear it down: protein quality control in the sarcomere. Cardiovasc Res 81:439–448

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Tripathy A, Pasek DA, Meissner G (1998) Potential for pharmacology of ryanodine receptor/calcium release channels. Ann N Y Acad Sci 853:130–148

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H, Takahashi M, Koshimizu M, Tanonaka K, Oikawa R, Toyo-oka T, Takeo S (2003) Decrease in sarcoglycans and dystrophin in failing heart following acute myocardial infarction. Cardiovasc Res 59:419–427

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 09/17787-8; 09/53544-2; 10/18629-4; 10/19216-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cibele M. Prado.

Ethics declarations

All protocols were approved by the Committee on Animal Research of School of Medicine of Ribeirão Preto, University of São Paulo, Brazil (Protocol 183/2010).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malvestio, L.M., Celes, M.R.N., Jelicks, L.A. et al. Dantrolene improves in vitro structural changes induced by serum from Trypanosoma cruzi-infected mice. Parasitol Res 116, 429–433 (2017). https://doi.org/10.1007/s00436-016-5281-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-016-5281-1

Keywords

Navigation