Skip to main content
Log in

Preliminary characterization and expression of Vasa-like gene in Schistosoma japonicum

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The Vasa gene is a vital germline marker to study the origin and development of germ cells and gonads in many organisms. Until now, little information was available about the characteristics of the Vasa gene in Schistosoma japonicum (S. japonicum). In this study, we cloned the open reading frame (ORF) of the S. japonicum Vasa-like gene (Sj-Vasa). The expression pattern and tissue localization of Sj-Vasa were also analyzed. Our results showed that Sj-Vasa shared the general feature of DEAD-box family member proteins. Sj-Vasa was transcribed and expressed throughout the S. japonicum life cycle with transcription exhibiting high levels at day 24 in both male and female worms, and the expression level in the female was always higher than that in the male. Sj-Vasa protein was localized in a variety of tissues of adult schistosomes, including the gonads (ovary, vitellarium, and testes), the subtegument, and some cells of the parenchyma. To our knowledge, this is the first report of preliminary characterization and expression of the Vasa-like gene that may play an important role in the development of the worm, especially in reproductive organs of S. japonicum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrade LF, Mourao Mde M, Geraldo JA, Coelho FS, Silva LL, Neves RH, Volpini A, Machado-Silva JR, Araujo N, Nacif-Pimenta R, Caffrey CR, Oliveira G (2014) Regulation of Schistosoma mansoni development and reproduction by the mitogen-activated protein kinase signaling pathway. PLoS Negl Trop Dis 8, e2949

    Article  PubMed Central  PubMed  Google Scholar 

  • Cogswell AA, Kommer VP, Williams DL (2012) Transcriptional analysis of a unique set of genes involved in Schistosoma mansoni female reproductive biology. PLoS Negl Trop Dis 6(11):e1907

  • Collins JJ 3rd, Wang B, Lambrus BG, Tharp ME, Iyer H, Newmark PA (2013) Adult somatic stem cells in the human parasite Schistosoma mansoni. Nature 494:476–479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Costache AD, Pullela PK, Kasha P, Tomasiewicz H, Sem DS (2005) Homology-modeled ligand-binding domains of zebrafish estrogen receptors alpha, beta1, and beta2: from in silico to in vivo studies of estrogen interactions in Danio rerio as a model system. Mol Endocrinol 19:2979–2990

    Article  CAS  PubMed  Google Scholar 

  • Dearden PK (2006) Germ cell development in the Honeybee (Apis mellifera); vasa and nanos expression. BMC Dev Biol 6:6

    Article  PubMed Central  PubMed  Google Scholar 

  • Doenhoff MJ, Pica-Mattoccia L (2006) Praziquantel for the treatment of schistosomiasis: its use for control in areas with endemic disease and prospects for drug resistance. Exp Rev Anti Infect Ther 4:199–210

    Article  CAS  Google Scholar 

  • Doenhoff MJ, Cioli D, Utzinger J (2008) Praziquantel: mechanisms of action, resistance and new derivatives for schistosomiasis. Curr Opin Infect Dis 21:659–667

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara Y, Komiya T, Kawabata H, Sato M, Fujimoto H, Furusawa M, Noce T (1994) Isolation of a DEAD-family protein gene that encodes a murine homolog of Drosophila vasa and its specific expression in germ cell lineage. Proc Natl Acad Sci U S A 91:12258–12262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Galanti SE, Huang SC, Pearce EJ (2012) Cell death and reproductive regression in female Schistosoma mansoni. PLoS Negl Trop Dis 6, e1509

    Article  PubMed Central  PubMed  Google Scholar 

  • Gruidl ME, Smith PA, Kuznicki KA, McCrone JS, Kirchner J, Roussell DL, Strome S, Bennett KL (1996) Multiple potential germ-line helicases are components of the germ-line-specific P granules of Caenorhabditis elegans. Proc Natl Acad Sci U S A 93:13837–13842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gustafson EA, Wessel GM (2010) Vasa genes: emerging roles in the germ line and in multipotent cells. Bioessays 32:626–637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gustafson EA, Yajima M, Juliano CE, Wessel GM (2011) Post-translational regulation by gustavus contributes to selective Vasa protein accumulation in multipotent cells during embryogenesis. Dev Biol 349:440–450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hay B, Jan LY, Jan YN (1990) Localization of vasa, a component of Drosophila polar granules, in maternal-effect mutants that alter embryonic anteroposterior polarity. Development 109:425–433

    CAS  PubMed  Google Scholar 

  • He YX, Gong ZX, Ma JX (1980) Scanning and transmission electron microscopy of Schistosoma japonicum egg shell. Chin Med J (Engl) 93:861–864

    CAS  Google Scholar 

  • Ikenishi K, Tanaka TS (2000) Spatio-temporal expression of Xenopus vasa homolog, XVLG1, in oocytes and embryos: the presence of XVLG1 RNA in somatic cells as well as germline cells. Dev Growth Differ 42:95–103

    Article  CAS  PubMed  Google Scholar 

  • Kunz W (2001) Schistosome male–female interaction: induction of germ-cell differentiation. Trends Parasitol 17:227–231

    Article  CAS  PubMed  Google Scholar 

  • Leutner S, Oliveira KC, Rotter B, Beckmann S, Buro C, Hahnel S, Kitajima JP, Verjovski-Almeida S, Winter P, Grevelding CG (2013) Combinatory microarray and SuperSAGE analyses identify pairing-dependently transcribed genes in Schistosoma mansoni males, including follistatin. PLoS Negl Trop Dis 7, e2532

    Article  PubMed Central  PubMed  Google Scholar 

  • Li SZ, Zheng H, Gao J, Zhang LJ, Zhu R, Xu J, Guo JG, Xiao N, Zhou XN (2013) Endemic status of schistosomiasis in People’s Republic of China in 2012. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi 25:557–563

    PubMed  Google Scholar 

  • Liu M, Wang X, Lei L, Zhao Z, Shen J (2010) The identification, expression profile, and preliminary characterization of Tsunagi protein from Schistosoma japonicum. Parasitol Res 107:615–621

    Article  PubMed  Google Scholar 

  • Liu S, Cai P, Hou N, Piao X, Wang H, Hung T, Chen Q (2012) Genome-wide identification and characterization of a panel of house-keeping genes in Schistosoma japonicum. Mol Biochem Parasitol 182:75–82

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • LoVerde PT, Hirai H, Merrick JM, Lee NH, El-Sayed N (2004) Schistosoma mansoni genome project: an update. Parasitol Int 53:183–192

    Article  CAS  PubMed  Google Scholar 

  • LoVerde PT, Andrade LF, Oliveira G (2009) Signal transduction regulates schistosome reproductive biology. Curr Opin Microbiol 12:422–428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Magalhaes LG, de Castro-Borges W, de Souza GM, Guerra-Sa R, Rodrigues V (2009) Molecular cloning, sequencing, and expression analysis of presenilin cDNA from Schistosoma mansoni. Parasitol Res 106:7–13

    Article  PubMed  Google Scholar 

  • Mann VH, Suttiprapa S, Skinner DE, Brindley PJ, Rinaldi G (2014) Pseudotyped murine leukemia virus for schistosome transgenesis: approaches, methods and perspectives. Transgenic Res 23:539–556

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki K, Nishimiya-Fujisawa C, Fujisawa T (2001) Universal occurrence of the vasa-related genes among metazoans and their germline expression in Hydra. Dev Genes Evol 211:299–308

    Article  CAS  PubMed  Google Scholar 

  • Olsen LC, Aasland R, Fjose A (1997) A vasa-like gene in zebrafish identifies putative primordial germ cells. Mech Dev 66:95–105

    Article  CAS  PubMed  Google Scholar 

  • Oyama A, Shimizu T (2007) Transient occurrence of vasa-expressing cells in nongenital segments during embryonic development in the oligochaete annelid Tubifex tubifex. Dev Genes Evol 217:675–690

    Article  CAS  PubMed  Google Scholar 

  • Pfister D, de Mulder K, Hartenstein V, Kuales G, Borgonie G, Marx F, Morris J, Ladurner P (2008) Flatworm stem cells and the germ line: developmental and evolutionary implications of macvasa expression in Macrostomum lignano. Dev Biol 319:146–159

    Article  CAS  PubMed  Google Scholar 

  • Rebscher N, Volk C, Teo R, Plickert G (2008) The germ plasm component Vasa allows tracing of the interstitial stem cells in the cnidarian Hydractinia echinata. Dev Dyn : Off Publ Am Assoc Anatomists 237:1736–1745

    Article  CAS  Google Scholar 

  • Ren CP, Zhang P, Zhang WN, Huang DK, Jia XM, Gui L, Liu M, Shen JJ (2013) Schistosoma japonicum: Tsunagi/Y14 protein plays a critical role in the development of the reproductive organs and eggs. Exp Parasitol 135:430–436

    Article  CAS  PubMed  Google Scholar 

  • Rosner A, Rinkevich B (2007) The DDX3 subfamily of the DEAD box helicases: divergent roles as unveiled by studying different organisms and in vitro assays. Curr Med Chem 14:2517–2525

    Article  CAS  PubMed  Google Scholar 

  • Roussell DL, Bennett KL (1993) glh-1, a germ-line putative RNA helicase from Caenorhabditis, has four zinc fingers. Proc Natl Acad Sci U S A 90:9300–9304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sano H, Nakamura A, Kobayashi S (2002) Identification of a transcriptional regulatory region for germline-specific expression of vasa gene in Drosophila melanogaster. Mech Dev 112:129–139

    Article  CAS  PubMed  Google Scholar 

  • Schupbach T, Wieschaus E (1986) Germline autonomy of maternal-effect mutations altering the embryonic body pattern of Drosophila. Dev Biol 113:443–448

    Article  CAS  PubMed  Google Scholar 

  • Skinner DE, Rinaldi G, Suttiprapa S, Mann VH, Smircich P, Cogswell AA, Williams DL, Brindley PJ (2012) Vasa-Like DEAD-box RNA helicases of Schistosoma mansoni. PLoS Negl Trop Dis 6, e1686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Updike DL, Hachey SJ, Kreher J, Strome S (2011) P granules extend the nuclear pore complex environment in the C. elegans germ line. J Cell Biol 192:939–948

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vanderstraete M, Gouignard N, Cailliau K, Morel M, Hahnel S, Leutner S, Beckmann S, Grevelding CG, Dissous C (2014) Venus kinase receptors control reproduction in the platyhelminth parasite Schistosoma mansoni. PLoS Pathog 10, e1004138

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang X, Li H, Qi X, Shi Y, Xia Y, Yang J, Yuan C, Feng X, Lin J (2011) Characterization and expression of a novel Frizzled 9 gene in Schistosoma japonicum. Gene Expr Patterns : GEP 11:263–270

    Article  PubMed  Google Scholar 

  • Wang KG, Zeng QR, Zhang YK, Zhou J, Cai LT, Liang Y, Liu Y (2012) Preparation of agar-paraffin double-embedded longitudinal sections of Schistosoma japonicum. Zhongguo ji sheng chong xue yu ji sheng chong bing za zhi = Chin J Parasitol Parasitic Dis 30:415–417

    CAS  Google Scholar 

  • WHO (2013) Schistosomiasis WHO Media Centre, Fact sheet Nu115 Available: http://www.who.int/mediacentre/factsheets/fs115/en/

  • Wilson MS, Mentink-Kane MM, Pesce JT, Ramalingam TR, Thompson R, Wynn TA (2007) Immunopathology of schistosomiasis. Immunol Cell Biol 85:148–154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wolke U, Weidinger G, Koprunner M, Raz E (2002) Multiple levels of posttranscriptional control lead to germ line-specific gene expression in the zebrafish. Curr Biol: CB 12:289–294

    Article  CAS  PubMed  Google Scholar 

  • Wu HR, Chen YT, Su YH, Luo YJ, Holland LZ, Yu JK (2011) Asymmetric localization of germline markers Vasa and Nanos during early development in the amphioxus Branchiostoma floridae. Dev Biol 353:147–159

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Ren Y, Xu X, Chen J, Li Y, Gan W, Zhang Z, Zhan H, Hu X (2014) Schistosoma japonicum tegumental protein 20.8, role in reproduction through its calcium binding ability. Parasitol Res 113:491–497

    Article  PubMed  Google Scholar 

  • Yajima M, Wessel GM (2011) The multiple hats of Vasa: its functions in the germline and in cell cycle progression. Mol Reprod Dev 78:861–867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou SH, Wang SP (2007) A simplified method for rapid isolation of Schistosoma japonicum immature eggs. Chin J Schisto Control 19:128–130

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (no. 81271815) and Scientific Research of BSKY (XJ201321) from Anhui Medical University. We thank Dr. Lili Xu (Anhui Huaqi Biotech Engineering, LLC) for modifying the manuscript. And we thank Fei Yang, Haiyan Cheng, and Dake Huang in our laboratory for their generous assistance during the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jijia Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diao, Y., Hua, M., Shao, Y. et al. Preliminary characterization and expression of Vasa-like gene in Schistosoma japonicum . Parasitol Res 114, 2679–2687 (2015). https://doi.org/10.1007/s00436-015-4473-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4473-4

Keywords

Navigation