Skip to main content

Advertisement

Log in

Sublethal effects of atrazine and glyphosate on life history traits of Aedes aegypti and Aedes albopictus (Diptera: Culicidae)

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Although exposure of mosquito larvae to agricultural chemicals such as herbicides is common and widespread, our understanding of how these chemicals affect mosquito ecology and behavior is limited. This study investigated how an environmentally relevant concentration of two herbicides, atrazine and glyphosate, affects mosquito life history traits. One hundred and fifty (150) first instar Aedes (Stegomyia) aegypti (L.) or Aedes (Stegomyia) albopictus (Skuse) larvae were reared in 1.6 L of live oak leaf (Quercus virginiana) infusion in the presence (5 mg/L) or absence (0 mg/L) of atrazine or glyphosate. The containers were monitored daily to determine the emergence rates, sex ratio, male and female emergence times, and female body size. Emergence rates of A. aegypti from atrazine treatment were significantly higher relative to either glyphosate or control treatments (A. aegypti: atrazine = 93 ± 6 % (±95 % CI), glyphosate = 82 ± 5 %, control = 78 ± 5 %), while emergence rates of A. albopictus in atrazine treatments were significantly higher than in glyphosate treatments but not in controls (A. albopictus: atrazine = 84 ± 5 %, glyphosate = 76 ± 4 %, control = 78 ± 4 %). For both mosquito species, a sex ratio distortion with male bias was observed in control and glyphosate treatments, but not in atrazine treatments (A. aegypti: atrazine = 0.90 ± 0.17 (±SE), glyphosate = 1.63 ± 0.21, control = 1.69 ± 0.26; A. albopictus: atrazine = 1.09 ± 0.08, glyphosate = 1.88 ± 0.12, control = 1.37 ± 0.11). Emergence times for both sexes of the two mosquito species were significantly longer in atrazine treatments compared to glyphosate or control treatments (A. aegypti: females: atrazine = 11.20 ± 0.50 (days ± 95 % CI), glyphosate = 9.71 ± 0.23, control = 9.87 ± 0.21; males: atrazine = 9.46 ± 0.27, glyphosate = 8.80 ± 0.25, control = 8.85 ± 0.24; A. albopictus: females: atrazine = 17.40 ± 1.70, glyphosate = 12.4 ± 0.40, control = 12.5 ± 0.30; males: atrazine = 12.96 ± 0.41, glyphosate = 10.48 ± 0.24, control = 10.64 ± 0.37). For A. albopictus but not A. aegypti, adult females from atrazine treatment had significantly longer wing lengths compared to those from glyphosate or control treatments (A. albopictus: atrazine = 3.06 ± 0.07 (mm ± 95 % CI), glyphosate = 2.80 ± 0.07, control = 2.83 ± 0.06). These results demonstrate the potential for atrazine, a widely used herbicide, to influence epidemiologically relevant life history traits of mosquitoes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alto BW, Reiskind MH, Lounibos LP (2008) Size alters susceptibility of vectors to dengue virus infection and dissemination. Am J Trop Med Hyg 79:688–695

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alto BW, Muturi EJ, Lampman RL (2012) Effects of nutrition and density in Culex pipiens. Med Vet Entomol 26:396–406

    Article  CAS  PubMed  Google Scholar 

  • Alto BW, Lampman RL, Kesavaraju B, Muturi EJ (2013) Pesticide-induced release from competition among competing Aedes aegypti and Aedes albopictus (Diptera: Culicidae). J Med Entomol 50:1240–1249

    Article  PubMed  Google Scholar 

  • Amer A, Mehlhorn H (2006) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472

    Article  PubMed  Google Scholar 

  • Battaglin WA, Meyer MT, Dietze JE (2011) Widespread occurrence of glyphosate and its degradation product (AMPA) in U.S. soils, surface water, groundwater, and precipitation, 2001–2009. Amer Geophys Union: abstract #H44A-08

  • Bedhomme S, Agnew P, Sidobre C, Michalakis Y (2003) Sex-specific reaction norms to intraspecific larval competition in the mosquito Aedes aegypti. J Evol Biol 16:721–730

    Article  CAS  PubMed  Google Scholar 

  • Blackmore MS, Lord CC (2000) The relationship between size and fecundity in Aedes albopictus. J Vect Ecol 25:212–217

    CAS  Google Scholar 

  • Bourguet DT, Guillemaud T, Chevillon C, Raymond M (2004) Fitness costs of insecticide resistance in natural breeding sites of the mosquito Culex pipiens. Evolution 58:128–135

    Article  PubMed  Google Scholar 

  • Boyer S, Serandour J, Lemperiere G, Raveton M, Ravanel P (2006) Do herbicide treatments reduce the sensitivity of mosquito larvae to insecticides? Chemosphere 65:721–724

    Article  CAS  PubMed  Google Scholar 

  • Briegel H (1990) Fecundity, metabolism, and body size in Anopheles (Diptera: Culicidae), vectors of malaria. J Med Entomol 27:839–850

    CAS  PubMed  Google Scholar 

  • Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP (2011) The development, regulation and use of biopesticides for integrated pest management. Phil Trans R Soc B 366:1987–1998

    Article  PubMed Central  PubMed  Google Scholar 

  • Choung CB, Hyne RV, Stevens MM, Hose GC (2013) The ecological effects of a herbicide-insecticide mixture on an experimental freshwater ecosystem. Environ Pollut 172:264–274

    Article  CAS  PubMed  Google Scholar 

  • Clements AN (1992) The biology of mosquitoes: volume 1: development, nutrition, and reproduction. CABI Publishing Company, New York

    Google Scholar 

  • Costantini D, Metcalfe NB, Monaghan P (2010) Ecological processes in a hormetic framework. Ecol Lett 13:1435–1447

    Article  PubMed  Google Scholar 

  • Cutler GC (2013) Insects, insecticides and hormesis: evidence and considerations for study. Dose Response 11:154–177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • David JP, Coissac E, Melodelima C, Poupardin R, Riaz MA, Chandor-Proust A, Reynaud S (2010) Transcriptome response to pollutants and insecticides in the dengue vector Aedes aegypti using next-generation sequencing technology. BMC Genomics 11:216

    Article  PubMed Central  PubMed  Google Scholar 

  • Devine MD, Duke SO, Fedtke C (1993) Physiology of herbicide action. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Dewey SL (1986) Effects of the herbicide atrazine on aquatic insect community structure and emergence. Ecology 67:148–162

    Article  CAS  Google Scholar 

  • Dye C (1986) Vectorial capacity: must we measure all its components? Parasitol Today 2:203–208

    Article  CAS  PubMed  Google Scholar 

  • Edwards WM, Triplett GB, Kramer RM (1980) A watershed study of glyphosate transport in runoff. J Environ Qual 9:661–665

    Article  CAS  Google Scholar 

  • Faulde MK, Albiez G, Nehring O (2010) Insecticidal, acaricidal and repellent effects of DEET- and IR3535-impregnated bed nets using a novel long-lasting polymer-coating technique. Parasitol Res 106:957–965

    Article  PubMed  Google Scholar 

  • Fonseca-González I, Cárdenas R, Quiñones ML, McAllister J, Brogdon WG (2009) Pyrethroid and organophosphates resistance in Anopheles (N.) nuneztovari Gabaldón populations from malaria endemic areas in Colombia. Parasitol Res 105:1399–1409

    Article  PubMed  Google Scholar 

  • Frogner KJ (1980) Variable developmental period: intraspecific competition models with conditional age-specific maturity and mortality schedules. Ecology 61:1099–1106

    Article  Google Scholar 

  • Gilliom RJ, Hamilton PA (2006) Pesticides in nation’s streams and ground water 1992–2001. A summary. US Geological Survey circular 3409

  • Graymore M, Stagnitti F, Allinson G (2001) Impacts of atrazine in aquatic ecosystems. Environ Int 26:483–495

    Article  CAS  PubMed  Google Scholar 

  • Grube A, Donaldson D, Kiely T, Wu L (2011) Pesticide industry sales and usage: 2006 and 2007 market estimates. Biological and Economic Analysis Division, U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Gruessner B, Watzin MC (1996) Response of aquatic communities from a Vermont stream to environmentally realistic atrazine exposure in laboratory microcosms. Environ Toxicol Chem 15:410–419

    Article  CAS  Google Scholar 

  • Hardstone MC, Huang X, Harrington LC, Scott JG (2010) Differences in development, glycogen, and lipid content associated with cytochrome P450-mediated permethrin resistance in Culex pipiens quinquefasciatus (Diptera: Culicidae). J Med Entomol 47:188–198

    Article  CAS  PubMed  Google Scholar 

  • Hayes T, Haston K, Tsui M, Hoang A, Haeffele C, Vonk A (2003) Atrazine-induced hermaphroditism at 0.1 ppb in American leopard frogs (Rana pipiens): laboratory and field evidence. Environ Health Perspect 111:568–575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hayes TB, Khoury V, Narayan A, Nazir M, Park A, Brown T, Adame L, Chan E, Buchholz D, Stueve T, Gallipeau S (2010) Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopus laevis). Proc Natl Acad Sci 107:4612–4617

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Juliano SA (2009) Species interactions among larval mosquitoes: context dependence across habitat gradients. Ann Rev Entomol 54:37–56

    Article  CAS  Google Scholar 

  • Kesavaraju B, Alto BW, Afify A, Gaugler R (2011a) Malathion influences competition between Aedes albopictus and Aedes japonicus. J Med Entomol 47:1011–1018

    Article  Google Scholar 

  • Kesavaraju B, Brey CW, Farajollahi A, Evans HL, Gaugler R (2011b) Effect of malathion on larval competition between Aedes albopictus and Aedes atropalpus (Diptera: Culicidae). J Med Entomol 48:479–484

    Article  CAS  PubMed  Google Scholar 

  • Keshan B, Ray AK (2000) Estradiol-17b in Bombyx mori: possible significance and its effect on silk production. J Insect Phys 46:1061–1068

    Article  CAS  Google Scholar 

  • Kovendan K, Murugan K, Vincent S (2012) Evaluation of larvicidal activity of Acalypha alnifolia Klein ex Willd. (Euphorbiaceae) leaf extract against the malarial vector, Anopheles stephensi, dengue vector, Aedes aegypti and Bancroftian filariasis vector, Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 110:571–581

    Article  PubMed  Google Scholar 

  • Kramer LD, Ebel GD (2003) Dynamics of flavivirus infection in mosquitoes. Adv Vir Res 60:187–231

    Article  Google Scholar 

  • Krutz LJ, Shaner DL, Weaver MA, Webb RMT, Zablotowicz RM, Reddy KN, Huang Y, Thomson SJ (2009) Agronomic and environmental implications of enhanced s-triazine degradation. Pest Manag Sci 66:461–481

    Article  Google Scholar 

  • Lord CC (1998) Density dependence in larval Aedes albopictus (Diptera: Culicidae). J Med Entomol 35:825–829

    CAS  PubMed  Google Scholar 

  • Lounibos LP, Escher RL (2008) Sex ratios of mosquitoes from long-term censuses of Florida tree holes. J Am Mosq Control Assoc 24:11–15

    Article  PubMed Central  PubMed  Google Scholar 

  • Marcombe S, Poupardin R, Darriet F, Reynaud S, Bonnet J, Strode C, Brengues C, Yébakima A, Ranson H, Corbel V, David JP (2009) Exploring the molecular basis of insecticide resistance in the dengue vector Aedes aegypti: a case study in Martinique Island (French West Indies). BMC Genomics 10:494

    Article  PubMed Central  PubMed  Google Scholar 

  • McCallum ML, Matlock M, Treas J, Safi B, Sanson W, McCallum JL (2013) Endocrine disruption of sexual selection by an estrogenic herbicide in the mealworm beetle (Tenebrio molitor). Ecotoxicology 22:1461–1466

    Article  CAS  PubMed  Google Scholar 

  • Merritt RW, Dadd RH, Walker ED (1992) Feeding behavior, natural food, and nutritional relationships of larval mosquitoes. Annu Rev Entomol 37:349–376

    Article  CAS  PubMed  Google Scholar 

  • Moreland DE (1980) Mechanisms of action of herbicides. Annu Rev Plant Physiol Plant Mol Biol 31:597–638

    Article  CAS  Google Scholar 

  • Muturi EJ, Alto BW (2011) Larval environmental temperature and insecticide exposure alter Aedes aegypti competence for arboviruses. Vector Borne Zoonotic Dis 11:1157–1163

    Article  PubMed  Google Scholar 

  • Muturi EJ, Costanzo K, Kesavaraju B, Lampman R, Alto BW (2010) Interaction of a pesticide and larval competition on life history traits of Culex pipiens. Acta Trop 116:141–146

    Article  CAS  PubMed  Google Scholar 

  • Muturi EJ, Kim CH, Alto BW, Berenbaum MR, Schuler MA (2011a) Larval environmental stress alters Aedes aegypti competence for Sindbis virus. Trop Med Int Health 16:955–964

    Article  CAS  PubMed  Google Scholar 

  • Muturi EJ, Costanzo K, Kesavaraju B, Alto BW (2011b) Can pesticides and larval competition alter susceptibility of Aedes mosquitoes (Diptera: Culicidae) to arbovirus infection? J Med Entomol 48:429–436

    Article  CAS  PubMed  Google Scholar 

  • Muturi EJ, Orindi BO, Kim CH (2013) Effect of leaf type and pesticide exposure on abundance of bacterial taxa in mosquito larval habitats. PLoS One 8:e71812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nkya TE, Akhouayri I, Kisinza W, David JP (2013) Impact of environment on mosquito response to pyrethroid insecticides: facts, evidences and prospects. Insect Biochem Mol Biol 43:407–416

    Article  CAS  PubMed  Google Scholar 

  • O’Connor JC, Chapin RE (2003) Critical evaluation of observed adverse effects of endocrine active substances on reproduction and development, the immune system, and the nervous system. Pure Appl Chem 75:2099–2123

    Google Scholar 

  • Palma P, Palma VL, Matos C, Fernandes RM, Bohn A, Soares AMVM, Barbosa IR (2009) Assessment of the pesticides atrazine, endosulfan sulphate and chlorpyrifos for juvenoid-related endocrine activity using Daphnia magna. Chemosphere 76:335–340

    Article  CAS  PubMed  Google Scholar 

  • Patil CD, Borase HP, Salunke B, Patil SV (2013) Alteration in Bacillus thuringiensis toxicity by curing gut flora: a novel approach for mosquito resistance management. Parasitol Res 112:3283–3288

    Article  PubMed  Google Scholar 

  • Poupardin R, Reynaud S, Strode C, Ranson H, Vontas J, David JP (2008) Cross-induction of detoxification genes by environmental xenobiotics and insecticides in the mosquito Aedes aegypti: impact on larval tolerance to chemical insecticides. Insect Biochem Mol Biol 38:540–551

    Article  CAS  PubMed  Google Scholar 

  • Pratt JR, Melendez AE, Barreiro R, Bowers NJ (1997) Predicting the ecological effects of herbicides. Ecol Appl 7:1117–1124

    Article  Google Scholar 

  • Rakotondravelo ML, Anderson TD, Charlton RE, Zhu KY (2006) Sublethal effects of three pesticides on larval survivorship, growth, and macromolecule production in the aquatic midge, Chironomus tentans (Diptera: Chironomidae). Arch Environ Contam Toxicol 51:352–359

    Article  CAS  PubMed  Google Scholar 

  • Relyea RA (2009) A cocktail of contaminants: how mixtures of pesticides at low concentrations affect aquatic communities. Oecologia 159:363–376

    Article  PubMed  Google Scholar 

  • Riaz MA, Poupardin R, Reynaud S, Strode C, Ranson H, David JP (2009) Impact of glyphosate and benzo[a]pyrene on the tolerance of mosquito larvae to chemical insecticides. Role of detoxification genes in response to xenobiotics. Aquat Toxicol 93:61–69

    Article  CAS  PubMed  Google Scholar 

  • Rivero A, Vezilier J, Weill M, Read AF, Gandon S (2010) Insecticide control of vector-borne diseases: when is insecticide resistance a problem? PLoS Pathog 6(8):e1001000

    Article  PubMed Central  PubMed  Google Scholar 

  • Rohr JR, Sager T, Sesterhenn TM, Palmer BD (2006) Exposure, post-exposure, and density-mediated effects of atrazine on amphibians: breaking down net effects into their parts. Environ Health Perspect 114:46–50

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rohr JR, Schotthoefer AM, Raffel TR, Carrick HJ, Halstead N, Hoverman JT, Johnson CM, Johnson LB, Lieske C, Piwoni MD, Schoff PK, Beasley VR (2008) Agrochemicals increase trematode infections in a declining amphibian species. Nature 455:1235–1240

    Article  CAS  PubMed  Google Scholar 

  • Sass JB, Colangelo A (2006) European Union bans atrazine, while the United States negotiates continued use. Int J Occup Environ Health 12:260–267

    Article  CAS  PubMed  Google Scholar 

  • Schulz R (2004) Field studies on exposure, effects, and risk mitigation of aquatic nonpoint-source insecticide pollution: a review. J Environ Qual 33:419–448

    Article  CAS  PubMed  Google Scholar 

  • Scott JG (1999) Cytochromes P450 and insecticide resistance. Insect Biochem Mol Biol 29:757–777

    Article  CAS  PubMed  Google Scholar 

  • Skark C, Zullei-Seibert N, Schottler U, Schlett C (1998) The occurrence of glyphosate in surface water. Int J Environ Anal Chem 70:93–104

    Article  CAS  Google Scholar 

  • Suwanchaichinda C, Brattsten LB (2001) Effects of exposure to pesticides on carbaryl toxicity and cytochrome P450 activities in Aedes albopictus larvae (Diptera: Culicidae). Pestic Biochem Physiol 70:63–73

    Article  CAS  Google Scholar 

  • Sweeney TL, Barr R (1978) Sex ratio distortion by meiotic drive in a mosquito. Genetics 88:427–446

    Google Scholar 

  • Thurman EM, Goolsby DA, Meyer MT, Mills MS, Pomes ML, Kolpin DW (1992) A reconnaissance study of herbicides and their metabolites in surface water of the midwestern United States using immunoassay and gas chromatography mass spectrometry. Environ Sci Technol 26:2440–2447

    Article  CAS  Google Scholar 

  • Tikar SN, Mendki MJ, Chandel K, Parasher BD, Prakash S (2008) Susceptibility of immature stages of Aedes (Stegomyia) aegypti; vector of dengue and chikungunya to insecticides from India. Parasitol Res 102:907–913

    Article  CAS  PubMed  Google Scholar 

  • Vinogradova EB (2011) The sex structure of the larval populations of the urban mosquito Culex pipiens pipiens f. molestus Forskal (Diptera: Culicidae) in St. Petersburg. Entmol Rev 91:729–734

    Article  Google Scholar 

  • Wan MT, Kuo JN, McPherson B, Pasternak J (2006) Agricultural pesticide residues in farm ditches of the Lower Fraser Valley, British Columbia, Canada. J Environ Sci Health Part B: Pestic Food Contam Agric Wastes 41:647–669

    Article  Google Scholar 

  • Widenfalk A, Bertilsson S, Sundh I, Goedkoop W (2008) Effects of pesticides on community composition and activity of sediment microbes—responses at various levels of microbial community organization. Environ Pollut 152:576–584

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Nina Krasavin, Millon Blackshear, Julian Alvarado, Daniel Bernard, Thorsten Hansen, and Andrew Donelson for their assistance with daily maintenance of the experiment and Richard Lampman and Chang-Hyun Kim for their helpful comments on the manuscript. This study was supported by the Used Tire Fund and Emergency Public Health Fund from the State of Illinois and USDA National Institute of Food and Agriculture, hatch project number 875-334.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey J. Bara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bara, J.J., Montgomery, A. & Muturi, E.J. Sublethal effects of atrazine and glyphosate on life history traits of Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Parasitol Res 113, 2879–2886 (2014). https://doi.org/10.1007/s00436-014-3949-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-3949-y

Keywords

Navigation