Skip to main content

Advertisement

Log in

Are coinfections of malaria and filariasis of any epidemiological significance?

  • Review
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Africa accounts for about 33 and 90% of the world’s burden of lymphatic filariasis (LF) and malaria, respectively. Despite tremendous progress in the approach to their diagnosis, epidemiology, and treatment, and global campaigns for their control and/or elimination, their global burden and economic costs have continued to rise. In most rural areas of the tropics, both diseases co-occur in the same human population and share common mosquito vectors. It is therefore conceived that control of the two diseases can be integrated using tools that have been proven effective recently or in the past. Before implementation of control programs in areas co-endemic for both diseases, it is deemed necessary to understand how the two diseases interact in the vector and human hosts. Here, we summarize available knowledge on coinfections of malaria and LF and provide an insight on how they can be managed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdulcader MHM (1967) Present status of Brugia Malayi infection in Ceylon. J Trop Med Hyg 70:199–202

    Google Scholar 

  • Adl SM, Simpson A, Farmer M, Andersen R, Anderson O, Barta J, Bowser S, Brugerolle G, Fensome R, Fredericq S, James T, Karpov S, Kugrens P, Krug J, Lane C, Lewis L, Lodge J, Lynn D, Mann D, McCourt R, Mendoza L, Moestrup O, Mozley-Standridge S, Nerad T, Shearer C, Smirnov A, Spiegel F, Taylor M (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–351

    Article  PubMed  Google Scholar 

  • Albuquerque CM, Ham PJ (1995) Concomitant malaria (Plasmodium gallinaceum) and filaria (Brugia pahangi) infections in Aedes aegypti: Effect on parasite development. Parasitol 110:1–6

    Google Scholar 

  • Alleman MM, Twum-Danso N, Thylefors B (2006) The Mectizan donation program - highlights from 2005. Filaria J 5:11

    Article  PubMed  Google Scholar 

  • Anon (1993) Recommendations of the international task force for disease eradication. Morbidity and Mortality Weekly Rep 42:1–38

    Google Scholar 

  • Appawu AM, Dadzie SK, Baffoe-Wilmot A, Wilson DM (2001) Lymphatic filariasis in Ghana: entomological investigation of transmission dynamics and intensity in communities served by irrigation systems in the Upper East Region of Ghana. Trop Med Int Health 6:511–516

    Article  PubMed  CAS  Google Scholar 

  • Bockarie M (1994) Can lymphatic filariasis be eradicated in Papua New Guinea? Papua New Guinea Med J 37:61–64

    CAS  Google Scholar 

  • Bockarie M, Tavul L, Kastens W, Michael E, Kazura JW (2002) Impact of untreated bednets on prevalence of Wuchereria bacrofti transmitted by Anopheles farauti in Papua New Guinea. Med Vet Entomol 16:116–119

    Article  PubMed  CAS  Google Scholar 

  • Bockarie MJ, Hii JL, Alexander ND, Bockarie F, Dagoro H, Kazura JW, Alper MP (1999) Mass treatment with ivermectin for filariasis control in Papua New Guinea: Impact on mosquito survival. Med Vet Entomol 13:120–123

    Article  PubMed  CAS  Google Scholar 

  • Bogh C, Pedersen E, Mukoko D, Ouma J (1998) Permethrin-impregnated bednet effects on resting and feeding behavior of lymphatic filariasis vector mosquitoes in Kenya. Med Vet Entomol 12:52–59

    Article  PubMed  CAS  Google Scholar 

  • Buck A, Anderson R, MacRae A (1978) Epidemiology of poly-parasitism IV.. Combined effects on the state of health. TropenMed Parasitol 29:253–268

    CAS  Google Scholar 

  • Burkot T, Garner P, Paru R, Dagoro H, Barnes A, McDougall S, Wirtz R, Campbell G, Spark R (1990) Effect of untreated bednets on the transmission of Plasmodium falciparum, Plasmodium vivax, and Wuchereria bancrofti in Papua New Guinea. Trans R Soc Trop Med Hyg 84:773–779

    Article  PubMed  CAS  Google Scholar 

  • Burkot T, Molineaux L, Graves R, Paru R, Battistutta D, Dagoro H, Barnes A, Wirtz R, Garner P (1990) The prevalence of naturally acquired multiple infections of Wuchereria bancrofti and human malarias in anophelines. Parasitol 100:369–375

    Article  Google Scholar 

  • Burkot T, Taleo G, Toeaso V, Ichimori K (2002) Initial progress towards and challenges to filariasis elimination in Pacific island communities. Ann Trop Med Parasitol 96:S61–69

    Article  PubMed  Google Scholar 

  • Cartel JL, Sechan Y, Spiegel A, Nguyen L, Barbazan P, Martin PMV, Roux JF (1991) Cumulative mortality rates in Aedes polynesiensis after feeding on Polynesian Wuchereria bancrofti carriers treated with single dose ivermectin, diethylcarbamazine and placebo. Ann Trop Med Parasitol 42:343–345

    CAS  Google Scholar 

  • Chadee DD, Rawlins C, Tiwari T (2003) Short communication: concomitant malaria and filariasis infections in Georgetown, Guyana. Trop Med Int Health 8:140–143

    Article  PubMed  Google Scholar 

  • Chang M, Doraisingham P, Hardin S, Nagum N (1995) Malaria and filariasis transmission in a village/forest setting in Baram District, Sarawak, Malaysia. J Trop Med Hyg 98:192–198

    PubMed  CAS  Google Scholar 

  • Colatrella B (2003) The Mectizan® Donation Programme—successful collaboration between the public and private sectors. Essential Drugs Monitor 33:27–28

    Google Scholar 

  • Das BK, Sahoo PK, Ravindran B (1996) A role of tumor necrosis factor-alpha in acute lymphatic filariasis. Parasite Immunol 18:421–423

    Article  PubMed  CAS  Google Scholar 

  • Fillinger U, George S, Gerry FK, Bart GJK, Norbert B (2004) The practical importance of permanent and semipermanent habitats for controlling aquatic stages of Anopheles gambiae sensu lato mosquitoes: operational observations from a rural town in western Kenya. Trop Med Int Health 9:1274–1289

    Article  PubMed  Google Scholar 

  • Fillinger U, Knols BG, Becker N (2003) Efficacy and efficiency of new Bacillus thuringiensis var israelensis and Bacillus sphaericus formulations against Afrotropical anophelines in Western Kenya. Trop Med Int Health 8:37–47

    Article  PubMed  Google Scholar 

  • Ghebreyesus T, Haile M, Witten K, Getachew A, Yohannes A, Yohannes M, Teklehaimanot H, Lindsay S, Byass P (1999) Incidence of malaria among children living near dams in northern Ethiopia: community based incidence survey. BMJ 319:663–666

    PubMed  CAS  Google Scholar 

  • Ghosh S, Yadav R (1995) Naturally acquired concomitant infections of bancroftian filariasis and human Plasmodia in Orissa. Indian J Malariol 32:32–36

    PubMed  CAS  Google Scholar 

  • Giglioli G (1948) The transmission of Wuchereria bancrofti by Anopheles darlingi in the America tropics. Am J Trop Med 28:71–85

    CAS  Google Scholar 

  • Githeko A, Lindsay S, Confalonieri U, Patz J (2000) Climate change and vector-borne diseases: a regional analysis. Bull World Health Organ 78:1136–1147

    PubMed  CAS  Google Scholar 

  • Graham A, Lamb TJ, Read A, Allen J (2005) Malaria–filaria coinfection in mice makes malarial disease more severe unless filaria infection achieves patency. J Infect Dis 191:410–421

    Article  PubMed  Google Scholar 

  • Gyapong J, Twum-Danso N (2006) Global elimination of lymphatic filariasis: fact or fantasy? Trop Med Inter Health 11:125–128

    Article  Google Scholar 

  • Haddix A, Carter S, Michael E, Benton B (1999) Cost effectiveness of integrating lymphatic filariasis elimination into APOC onchocerciasis control programs. Report prepared for the Joint Action Forum/Joint Program Committee

  • Jankovic D, Sher A (2001) Th1/Th2 effector choice in the immune system: a developmental program influenced by cytokine signals.. In: Segel LA, Cohen IR (eds) Design principles for the immune system and other distributed autonomous systems. Oxford University Press, New York

    Google Scholar 

  • Kazura J, Greenberg J, Perry R, Weil G, Day K, Alpers M (1993) Comparison of single dose diethylcarbamazine and ivermectin for treatment of bancroftian filariasis in Papua New Guinea. Am J Trop Med Hyg 49:804–811

    PubMed  CAS  Google Scholar 

  • Keating J, Macintyre K, Mbogo C, Githure J, Beier J (2004) Characterization of potential larval habitats for Anopheles mosquitoes in relation to urban land-use in Malindi, Kenya. Int J Health Geogr 3:9

    Article  PubMed  Google Scholar 

  • Kelly-Hope L, Diggle P, Rowlingson B, Gyapong J, Kyelem D, Coleman M, Thomson M, Obsomer V, Lindsay S, Hemingway J, Molyneux D (2006) Short communication: Negative spatial association between lymphatic filariasis and malaria in West Africa. Trop Med Int Health 11:129–135

    Article  PubMed  Google Scholar 

  • Killeen GF, Seyoum ABK (2004) Rationalizing historical success of malaria control in Africa in terms of mosquito resource availability management. Amer J Trop Med Hyg 71:87–93

    Google Scholar 

  • Kitron U, Spielman A (1989) Suppression of transmission of malaria through source reduction: Anti-anopheline measures applied in Israel, the United States, and Italy. Rev Infect Dis 11:391–406

    PubMed  CAS  Google Scholar 

  • Klein T, Harrison BA, Grove JS, Dixon SV, Andre RG (1986) Correlation of survival rates of Anopheles dirus A (Diptera: Culicidae) with different infection densities of Plasmodium cynomolg. Bull World Health Organ 64:901–907

    PubMed  CAS  Google Scholar 

  • Lengeler C (2004) Insecticide-treated bed nets and curtains for preventing malaria. Cochrane Database Syst Rev 2:CD000363

    PubMed  Google Scholar 

  • Lindblade KA, Gimnig JE, Kamau L, Hawley WA, Odhiambo F, Olang G, ter Kuile FO, Vulule JM, Slutsker L (2006) Impact of sustained use of insecticide-treated bednets on malaria vector species distribution and culicine mosquitoes. J Med Entomol 43:428–432

    Article  PubMed  CAS  Google Scholar 

  • Lowrie RJ, Eberhard M, Lammie P, Raccurt C, Katz S, Duverseau Y (1989) Uptake and development of Wuchereria bancrofti in Culex quinquefasciatus that fed on Haitian carriers with different microfilaria densities. Am J Trop Med Hyg 41:429–435

    PubMed  Google Scholar 

  • Maizels R, Yazdanbakhsh M (2003) Immune regulation by helminth parasites: cellular and molecular mechanisms. Nat Rev Immunol 3:733–744

    Article  PubMed  CAS  Google Scholar 

  • Malacela-Lazaro M, Twum-Danso N (2004) Lymphatic filariasis research forum, 2.4 program implementation. Amer J Trop Med Hyg 71:16–19

    Google Scholar 

  • Maxwell C, Curtis C, Haji H, Kisumku S, Thalib AI, Yahya SA (1990) Control of Bancroftian filariasis by integrating therapy with vector control using polystyrene beads in wet pit latrines. Trans Roy Soc Trop Med Hyg 84:709–714

    Article  PubMed  CAS  Google Scholar 

  • Maxwell CA, Mohammed K, Kisumku U, Curtis CF (1999) Can vector control play a useful supplementary role against Bancroftian filariasis? Bull World Health Organ 77:138–143

    PubMed  CAS  Google Scholar 

  • Mbogo C, Baya N, Ofulla A, Githure J, Snow R (1996) The impact of permethrin-impregnated bednets on malaria vectors of the Kenyan coast. Med Vet Entomol 10:251–259

    PubMed  CAS  Google Scholar 

  • McMahon J, Magayuka S, Kolstrup N, Mosha F, Bushford F, Abaru D (1981) Studies on the transmission and prevalence of Bancroftian filariasis in four coastal villages of Tanzania. Ann Trop Med Parasitol 75:415–431

    PubMed  CAS  Google Scholar 

  • Metcalf RL (1998) Pesticides. In: Metcalf RL, Ziegler EN (eds) In Encyclopedia of Environmental Science and Engineering. Gordon and Breach Science Publishers

  • Michael E, Bundy D (1997) Global mapping of lymphatic filariasis. Parasitol Today 13:472–477

    Article  PubMed  CAS  Google Scholar 

  • Mosmann T, Sad S (1996) The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 17:138–146

    Article  PubMed  CAS  Google Scholar 

  • Muirhead-Thomson R (1953) Inter-relations between filarial and malarial infections in Anopheles gambiae. Nature 172:352–353

    Article  PubMed  CAS  Google Scholar 

  • Muturi E, Mbogo C, Ng’ang’a Z, Kabiru E, Mwandawiro C, Novak R, Beier J (2006a) Relationship between malaria and filariasis transmission indices in an endemic area along the Kenyan Coast. J Vector Borne Dis 43:77–83

    PubMed  Google Scholar 

  • Muturi JE, Mbogo C, Ng’ang’a Z, Kabiru E, Mwandawiro C, Beier J (2006b) Concomitant infections of Plasmodium falciparum and Wuchereria bancrofti on the Kenyan coast. Filaria J 5:8

    Article  PubMed  Google Scholar 

  • Mwangi T, Ross A, Marsh K, Snow RW (2003) The effects of untreated bednets on malaria infection and morbidity on the Kenyan coast. Trans R Soc Trop Med Hyg 97:369–372

    Article  PubMed  Google Scholar 

  • Nabarro DN, Tayler EM (1998) The ‘Roll back malaria’ campaign. Science 280:2067–2068

    Article  PubMed  CAS  Google Scholar 

  • Ngwira M, Jabu C, Kanyongoroka H, Mponda M, Crampin A, Branson K, Alexander D, Fine P (2002) Lymphatic filariasis in the Karonga district of northern Malawi: a prevalence survey. Ann Trop Med Parasitol 96:137–144

    Article  PubMed  CAS  Google Scholar 

  • Otessen E, Duke B, Karam MKB (1997) Strategies and tools for control/elimination of lymphatic filariasis. Bull World Health Organ 75:491–503

    Google Scholar 

  • Ottesen EA (2000) The global programme to eliminate lymphatic filariasis. Trop Med Int Health 5:591–594

    Article  PubMed  CAS  Google Scholar 

  • Pampiglione S, Majori G, Petrangeli G, Romi R (1985) Avermectins, MK-933 and MK-936, for mosquito control. Trans R Soc Trop Med Hyg 79:797–799

    Article  PubMed  CAS  Google Scholar 

  • Patz J, Graczyk T, Geller N, Vittor AY (2000) Effects of environmental change on emerging parasitic diseases. Int J Parasitol 30:1395–1405

    Article  PubMed  CAS  Google Scholar 

  • Pedersen E, Mukoko D (2002) Impact of insecticide-treated materials on filaria transmission by the various species of vector mosquito in Africa. Ann Trop Med Parasitol 96:S91–S95

    Article  PubMed  Google Scholar 

  • Ponnudurai T, Billingsley PF, Rudin W (1988) Differential infectivity of Plasmodium for mosquitoes. Parasitol Today 4:319–321

    Article  PubMed  CAS  Google Scholar 

  • Prasad R, Virk K, Prasad H, Sharma V (1990) Concomitant occurrence of malaria and filariasis in man in India. Mosquito-Borne Dis Bull 7:51–53

    Google Scholar 

  • Ramaiah K, Das P, Michael E, Guyatt H (2000) The economic burden of lymphatic filariasis in India. Parasit Today 16:251–253

    Article  CAS  Google Scholar 

  • Ramzy R, Setouhy M, Helmy H, Kandil A, Ahmed E, Farid H, Faris R, Weil G (2002) The impact of single-dose diethylcarbamazine treatment of bancroftian filariasis in a low-endemicity setting in Egypt. Amer J Trop Med Hyg 67:196–200

    CAS  Google Scholar 

  • Ravindran B, Sahoo PK, Dash AP (1998) Lymphatic filariasis and malaria: Concomitant parasitism in Orissa, India. Trans Roy Soc Trop Med Hyg 91:21–23

    Article  Google Scholar 

  • Richard G, Barbara L, Antony S (1991) The involvement of TNF-a, IL-1, and IL-6 in immune response to protozoan parasites. Parasitol Today 12:13–16

    Google Scholar 

  • Robert V, Awono-Ambene H, Thioulouse J (1998) Ecology of larval mosquitoes with special reference to Anopheles arabiensis (Diptera: Culcidae) in market-garden wells in urban Dakar, Senegal. J Med Entomol 35:948–955

    PubMed  CAS  Google Scholar 

  • Roberts DR, Manguin S, Mouchet J (2000) DDT house spraying and re-emerging malaria. Lancet 356:330–332

    Article  PubMed  CAS  Google Scholar 

  • Roberts M (1964) The control of epidemic malaria in the highlands of Western Kenya. Part II the campaign. J Trop Med Hyg 67:191–199

    CAS  Google Scholar 

  • Schmidt L, Esslinger J (1981) Courses of infections with Plasmodium falciparum in owl monkeys displaying a microfilaremia. Am J Trop Med Hyg 30:5–11

    PubMed  CAS  Google Scholar 

  • Soper F, Wilson D (1943) Anopheles gambiae in Brazil. The Rockefeller Foundation, New York

    Google Scholar 

  • Southgate BA (1992) Intensity and efficiency of transmission and the development of microfilaraemia and disease: Their relationship in lymphatic filariasis. J Trop Med and Hyg 95:1–12

    CAS  Google Scholar 

  • Tesh R, Guzman H (1990) Mortality and infertility in adult mosquitoes after the ingestion of blood containing ivermectin. Am J Trop Med Hyg 43:229–233

    PubMed  CAS  Google Scholar 

  • Trape JF, Rogier C (1996) Combating malaria morbidity and mortality by reducing transmission. Parasitol Today 12:236–240

    Article  PubMed  CAS  Google Scholar 

  • Turrell M, Rossingnol PA, Spielman A, Rossi CA, Bailey CL (1984) Enhanced arboviral transmission by mosquitoes that concurrently ingested microfilariae. Science 225:1039–1041

    Article  Google Scholar 

  • Utzinger J, Doumani F, Singer BH (2002) The economic payoffs of integrated malaria control in the Zambian copper-belt between 1930 and 1950. Trop Med Int Health 7:657–677

    Article  PubMed  Google Scholar 

  • Validum L (1998) Malaria returns: Anopheles darlingi, the scourge of generations is back. Guyana Review 5:8–16

    Google Scholar 

  • Wada Y (1974) In: Pal R, Wharton RH (eds) Culex tritaeniorhynchus. Control of arthropods of medical and veterinary importance. Plenum, New York

    Google Scholar 

  • Webber R (1977) The natural decline of Wuchereria bancrofti infection in a vector control situation in the Solomon Islands. Trans R Soc Trop Med Hyg 71:396–400

    Article  PubMed  CAS  Google Scholar 

  • Webber R (1979) Eradication of Wuchereria bancrofti infection through vector control. Trans R Soc Trop Med Hyg 73:722–724

    Article  PubMed  CAS  Google Scholar 

  • Webber R (1991) Can anopheline-transmitted filariasis be eradicated? J Trop Med Hyg 94:241–244

    PubMed  CAS  Google Scholar 

  • World Health Organization (1983) Report of the steering committee of the scientific working group on filariasis. World Health Organization, Geneva

    Google Scholar 

  • World Health Organization (1995) World Health Report 1995: Bridging the gaps. WHO, Geneva

    Google Scholar 

  • World Health Organization (1996) Operational manual on the application of insecticides for control of the mosquito vectors of malaria and other diseases. WHO/CTD/VBC96

  • World Health Organization (1999) Building partnerships for lymphatic filariasis-strategic plan. World Health Organization, Geneva

    Google Scholar 

  • World Health Organization (2001) The programme to eliminate lymphatic filariasis (PELF), Geneva.

  • World Health Organization (2004) Lymphatic filariasis elimination in the African region: progress report. WHO, Congo Brazaville

    Google Scholar 

  • World Health Organization (2005a) World Malaria Report 2005. World Health Organization,WHO/UNICEF 2005., Geneva

  • World Health Organization (2005b) Sixth meeting of the Technical Advisory Group on the Global Elimination of Lymphatic Filariasis, Geneva, Switzerland, 20–23 September 2005. Weekly Epidemiol Rec 80:401–408

    Google Scholar 

  • Yan Y, Inuo G, Akao N, Tsukidate S, Fujita K (1997) Down-regulation of murine susceptibility to cerebral malaria by inoculation with third-stage larvae of the filarial nematode Brugia pahangi.. Parasitol 114:333–338

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by NIH/NIAID grant UO1054889 (to R.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ephantus J. Muturi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muturi, E.J., Jacob, B.G., Kim, CH. et al. Are coinfections of malaria and filariasis of any epidemiological significance?. Parasitol Res 102, 175–181 (2008). https://doi.org/10.1007/s00436-007-0779-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-007-0779-1

Keywords

Navigation