Skip to main content

Advertisement

Log in

Differences in femoral morphology between sheep (Ovis aries) and goat (Capra hircus): macroscopic and microscopic observations

  • Original paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

It is often difficult, if not impossible, to separate postcranial elements of species, such as sheep and goats. Distinguishing between the skeletal remains of these species is important in a variety of scientific fields, such as comparative anatomy, taxonomy, biomechanical engineering, as well as zooarchaeology and palaeontology. The aim of this study was to assess morphological and morphometric differences of microscopic and macroscopic characteristics of the femur of sheep and goats, to be used to distinguish between these species. Approximately one hundred sheep and goat femora were examined. Microscopic results indicated that osteon and Haversian canal diameters are parameters useful to the distinction between sheep and goats. Twelve macroscopical features, which successfully separated goat and sheep femora, were identified and discussed, four of which were described for the first time with a mathematical approach. These differences could be related to the behavioural and locomotion patterns of the two species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Balasse M, Ambrose SH (2005) Distinguishing sheep and goats using dental morphology and stable carbon isotopes in C4 grassland environments. J Archaeol Sci 32:691–702

    Article  Google Scholar 

  • Bar-Gal GK, Ducos P, Horwitz LK (2003) The application of ancient DNA analysis to identify neolithic caprinae: a case study from the site of Hatoula, Israel. Int J Osteoarchaeol 13:120–131

    Article  Google Scholar 

  • Barone R (2010) Anatomie comparée des mammifères domestiques. Tome I, Osteologie. Vigot, Paris

    Google Scholar 

  • Boessneck J (1970) Osteological differences between sheep (Ovis aries Linné) and goats (Capra hircus Linné). In: Brothwell D, Higgs E (eds) Science in archaeology. Praeger, New York, pp 331–358

    Google Scholar 

  • Boessneck J, Müller HH, Teichert M (1964) Osteologische Unterscheidungmerkmale zwischen Schaf (Ovis aries Linné) und Ziege (Capra hircus Linné). Kühn-Archiv 78:1–129

    Google Scholar 

  • Bouma HW, De Boer SS, De Vos J, Van Kampen PM, Hogervorst A (2013) Mammal hip morphology and function: coxa recta and coxa rotunda. Anat Rec 296:250–256

    Article  Google Scholar 

  • Bouma H, Slot N-J, Toogood P, Pollard T, Van Kampen P, Hogervorst T (2014) Where is the neck? Alpha angle measurement revisited. Acta Orthopaed 85:147–151

    Article  Google Scholar 

  • Brits D, Steyn ML, L’Abbé EN (2014) A histomorphological analysis of human and non-human femora. Int J Legal Med 128:369–377

    Article  PubMed  Google Scholar 

  • Buckley M, Kansa SW, Howard S, Campbell S, Thomas-Oates J, Collins M (2010) Distinguishing between archaeological sheep and goat bones using a single collagen peptide. J Archaeol Sci 37:13–20

    Article  Google Scholar 

  • Campbell S, Carter E, Healey E, Anderson S, Kennedy A, Whitcher S (1999) Emerging complexity on the Kahramanmaras plain, Turkey: the Domuztepe project, 1995–1997. Am J Archaeol 103:395–418

    Article  Google Scholar 

  • Clutton-Brock J, Dennis-Bryan K, Armitage PL (1990) Osteology of the Soay Sheep. Bull Br Mus Nat Hist (Zool) 56:1–56

    Google Scholar 

  • Cornevin C, Lesbre F-X (1891) Caractères ostéologiques différentiels de la chèvre et du mouton. Bull Soc Anthropol Lyon 10:47–73

    Google Scholar 

  • Croft P (2003) The animal bones. In: Peltenburg E (ed) The colonisation and settlement of Cyprus: investigations at Kissonerga-Mylouthkia. Astrom, Savedalen, pp 49–56

    Google Scholar 

  • Davis SJM (1985) A preliminary report of the fauna from Hatoula: a Natufian Khiamian (PPNA) site near Latroun, Israel. In: Lechevallier M, Ronen A (eds) Le Site Natoufien-Khiamien de Hatoula Press de Latroun, Israel, vol 1., Les Cahiers de Recherche du Centre de Recherche française de JerusalemAssociation Paleorient, Paris, pp 71–98

    Google Scholar 

  • Dominguez VM, Crowder CM (2012) The utility of osteon shape and circularity for differentiating human and non-human Haversian bone. Am J Phys Anthropol 149:84–91

    Article  PubMed  Google Scholar 

  • Enlow DH, Brown SO (1956) A comparative histological study of fossil and recent bone tissues. Part I. Tex J Sci 8:405–443

    Google Scholar 

  • Gentry AW (1970) The Bovidae (Mammalia) of the Fort Ternan fossil fauna. In: Leakey LSB, Savage RJG (eds) Fossil vertebrates of Africa. Academic Press, London, pp 243–323

    Google Scholar 

  • Giua S, Farina V, Cacchioli A, Ravanetti F, Carcupino M, Mohadero Novas M, Zedda M (2014) Comparative histology of the femur between mouflon (Ovis aries musimon) and sheep (Ovis aries aries). J Biol Res 87:74–77

    Article  Google Scholar 

  • Grine FE, Krause DW, Fosse G, Jungers WL (1987) Analysis of individual, intraspecific and interspecific variability in quantitative parameters of caprine tooth enamel structure. Acta Odontol Scand 45:1–23

    Article  CAS  PubMed  Google Scholar 

  • Gudea A, Stefan AC (2013) Histomorphometric, fractal and lacunarity comparative analysis of sheep (Ovis aries), goat (Capra hircus) and roe deer (Capreolus capreolus) compact bone samples. Folia Morphol 72:239–248

    Article  CAS  Google Scholar 

  • Haile J, Holdaway R, Oliver K, Bunce M, Gilbert MTP, Nielsen R, Munch K, Ho SYW, Shapiro B, Willerslev E (2007) Ancient DNA chronology within sediment deposits: are paleobiological reconstructions possible and is DNA leaching a factor? Mol Biol Evol 24:982–989

    Article  CAS  PubMed  Google Scholar 

  • Halstead P, Collins P, Isaakidou V (2002) Sorting the sheep from the goats: morphological distinctions between the mandibles and mandibular teeth of adult Ovis and Capra. J Archaeol Sci 29:545–553

    Article  Google Scholar 

  • Helmer D (2000) Discrimination des genres Ovis et Capra à l’aide des prémolaires inférieures 3 et 4 et interpretation des ages d’abbatage: l’example de Dikili Tash (Grèce). Anthropozoologica 31:29–38

    Google Scholar 

  • Helmer D, Rocheteau M (1994). Atlas du squelette appendiculaire des principaux genres Holocènes de petits ruminants du nord de la Mèditerranèe et du Proche-Orient (Capra, Ovis, Rupicapra, Capreolus, Gazella). Fiches d’ostéologie animale pour l’archéologie. Série B: Mammifères. Centre de recherches archéologiques du CNRS, APDCA, Juan-Les-Pins, pp 3–21

  • Hernandez-Fernandez A, Vélez R, Soldado F, Saenz-Ríos JC, Barber I, Aguirre-Canyadell M (2013) Effect of administration of platelet-rich plasma in early phases of distraction osteogenesis: an experimental study in an ovine femur model. Injury 44:901–907

    Article  PubMed  Google Scholar 

  • Kappelman J (1988) Morphology and locomotor adaptations of the bovid femur in relation to habitat. J Morphol 198:119–130

    Article  CAS  PubMed  Google Scholar 

  • Kappelman J (1991) The paleoenvironment of Kenyapithecus at Fort Ternan. J Hum Evol 20:95–129

    Article  Google Scholar 

  • Kappelman J, Plummer T, Bishop L, Appleton AD, Appleton S (1997) Bovids as indicators of Plio-Pleistocene paleoenvironments in East Africa. J Hum Evol 32:229–256

    Article  CAS  PubMed  Google Scholar 

  • Kratochvil Z (1969) Species criteria on the distal section of the tibia in Ovis ammon F. aries L. and Capra aegagrus F. hircus L. Acta Vet Brno 38:483–490

    Google Scholar 

  • Leonard JA, Shanks O, Hofreiter M, Kreuz E, Hodges L, Ream W, Wayne RK, Fleischer RC (2007) Animal DNA in PCR reagents plagues ancient DNA research. J Archaeol Sci 34:1361–1366

    Article  Google Scholar 

  • Loreille O, Vigne JD, Hardy C, Callou C, Treinen-Claustre F, Dennebouy N, Monnerot M (1997) First distinction of sheep and goat archaeological bones by the means of their fossil mtDNA. J Archaeol Sci 24:33–37

    Article  Google Scholar 

  • Luikart G, Gielly L, Excoffier L, Vigne JD, Bouvet J, Taberlet P (2001) Multiple maternal origins and weak phylogeographic structure in domestic goats. Proc Natl Acad Sci USA 98:5927–5932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martiniaková M, GrosskopfB Omelka R, Dammers K, Vondráková M, Bauerová M (2007a) Histological study of compact bone tissue in some mammals: a method for species determination. Int J Osteoarchaeol 17:82–90

    Article  Google Scholar 

  • Martiniaková M, Grosskopf B, Omelka R, Vondráková M, Bauerová M (2007b) Histological analysis of ovine compact bone tissue. J Vet Med Sci 69:409–411

    Article  PubMed  Google Scholar 

  • Matthee CA, Davis SK (2001) Molecular insights into the evolution of the Family Bovidae: a nuclear DNA perspective. Mol Biol Evol 18:1220–1230

    Article  CAS  PubMed  Google Scholar 

  • Mayya A, Banerjee A, Rajesh R (2013) Mammalian cortical bone in tension is non-Haversian. Sci Rep 3:2533

    Article  PubMed  PubMed Central  Google Scholar 

  • Metz LN, Martin B, Turner S (2003) Histomorphometric analysis of the effects of osteocyte density on osteonal morphology and remodelling. Bone 33:753–759

    Article  PubMed  Google Scholar 

  • Mulhern DM, Ubelaker DH (2001) Differences in osteon banding between human and nonhuman bone. J Forensic Sci 46:220–222

    Article  CAS  PubMed  Google Scholar 

  • Newman ME, Parboosingh JS, Bridge PJ, Ceri H (2002) Identification of archaeological animal bone by PCR/DNA analysis. J Archaeol Sci 29:77–84

    Article  Google Scholar 

  • Nielsen-Marsh C (2002) Biomolecules in fossil remains. Biochem 24:12–14

    Google Scholar 

  • Nomina Anatomica Veterinaria, Fifth edition by International Committee on Veterinary Gross Anatomical Nomenclature 2012. Hannover, Columbia, Ghent, Sapporo

  • Oheim R, Amling M, Ignatius A, Pogoda P (2012) Large animal model for osteoporosis in humans: the ewe. Eur Cells Mater 24:372–385

    Article  CAS  Google Scholar 

  • Payne S (1969) A metrical distinction between sheep and goat metacarpals. In: Ucko PJ, Dimbleby GW (eds) The domestication and exploitation of plants and animals. Duckworth, London, pp 295–306

    Google Scholar 

  • Payne S (1985) Morphological distinctions between the mandibular teeth of young sheep, Ovis and goats, Capra. J Archaeol Sci 12:139–147

    Article  Google Scholar 

  • Pearce AI, Richards RG, Milz S, Schneider E, Pearce SG (2007) Animal models for implant biomaterial research in bone: a review. Eur Cells Mater 13:1–10

    Article  CAS  Google Scholar 

  • Pearson JA, Buitenhuis H, Hedges REM, Martin L, Russell N, Twiss KC (2007) New light on early caprine herding from isotope analysis: a case study from Neolithic Anatolia. J Archaeol Sci 34:2170–2179

    Article  Google Scholar 

  • Pourlis A, Chatzis T, Katsoulos P (2014) Comparison of two methods for the measurement of medial and lateral metapodial bones in karagouniko sheep (Ovis aries, L. 1758) and Hellenic goat (Capra hircus, L. 1758). Anat Res Int 2014:1–5

    Article  Google Scholar 

  • Prummel W, Frisch H-J (1986) A guide for the distinction of species, sex, and body size of sheep and goat. J Archaeol Sci 13:567–577

    Article  Google Scholar 

  • Ropiquet A, Hassanin A (2005) Molecular evidence for the polyphyly of the genus Hemitragus (Mammalia, Bovidae). Mol Phylogenet Evol 36:154–168

    Article  CAS  PubMed  Google Scholar 

  • Rozzi R, Palombo MR (2013) Do methods for predicting paleohabitats apply for mountain and insular fossil bovids? Integr zool 8:244–259

    Article  PubMed  Google Scholar 

  • Rozzi R, Winkler DE, De Vos J, Schulz E, Palombo MR (2013) The enigmatic bovid Duboisia santeng (Dubois, 1891) from the Early-Middle Pleistocene of Java: a multiproxy approach to its paleoecology. Palaeogeogr Palaeoclimatol Palaeoecol 377:73–85

    Article  Google Scholar 

  • Schramm Z (1967) Kosci dlugie a wysokosé w klebie kozy. Roczniki wyzszej szkoly rolniczej w Poznaniu 36:89–105

    Google Scholar 

  • Serrat MA, Reno PL, McCollum M, Meindl RS, Lovejo CO (2007) Variation in mammalian proximal femoral development: comparative analysis of two distinct ossification patterns. J Anat 210:249–258

    Article  PubMed  PubMed Central  Google Scholar 

  • Skedros JC (2005) Osteocyte lacuna population densities in sheep, elk and horse calcanei. Cells Tissues Organs 181:23–37

    Article  PubMed  Google Scholar 

  • Skedros JG, Mason MW, Bloebaum RD (1994) Differences in osteonal micromorphology between tensile and compressive cortices of a bending skeletal system: indications of potential strain-specific differences in bone microstructure. Anat Rec 239:405–413

    Article  CAS  PubMed  Google Scholar 

  • Skedros JG, Knight AN, Clark GC, Crowder CM, Dominguez VM, Qiu S, Mulhern DM, Donahue SW, Busse B, Hulsey BI, Zedda M, Sorenson SM (2013) Scaling of Haversian canal surface area to secondary osteon bone volume in ribs and limb bones. Am J Phys Anthropol 151:230–244

    Article  PubMed  Google Scholar 

  • Teichert M (1975) Osteometrische Untersuchungen zur Berechnung der Widerristhöhe bei Schafen. In: Clason AT (ed) Archaeozoological studies. American Elsevier, New York, pp 51–69

    Google Scholar 

  • Vigne JD (2011) The origins of animal domestication and husbandry: a major change in the history of humanity and biosphere. C R Biol 334:171–181

    Article  PubMed  Google Scholar 

  • von den Driesch A (1976) A guide to the measurement of animal bones from archaeological sites. Harv Univ Peabody Mus Archaeol Ethnol Bull 1:1–137

    Google Scholar 

  • Von den Driesch A, Wodtke U (1997) The fauna of’Ain Ghazal, a major PPN and early PM settlement in central Jordan. In: Gebel H, Kafafi Z, Rollefson G (eds) The Prehistory of Jordan II. Perspectives from 1997. Ex Orient, Berlin, pp 511–543

    Google Scholar 

  • Willerslev E, Cooper A (2005) Ancient DNA. Proc R Soc B Bio Sci 272:3–16

    Article  CAS  Google Scholar 

  • Zarrinkalam MR, Mulaibrahimovic A, Atkins GJ, Moore RJ (2012) Changes in osteocyte density correspond with changes in osteoblast and osteoclast activity in an osteoporotic sheep model. Osteoporosis Int 23:1329–1336

    Article  CAS  Google Scholar 

  • Zedda M, Lepore G, Manca P, Chisu V, Farina V (2008) Comparative bone histology of adult horses (Equus caballus) and cows (Bos taurus). Anat Histol Embryol 37:442–445

    Article  CAS  PubMed  Google Scholar 

  • Zedda M, Lepore G, Biggio GP, Gadau S, Mura E, Farina V (2015) Morphology, morphometry and spatial distribution of secondary osteons in equine femur. Anat Histol Embryol 44:328–332

    Article  CAS  PubMed  Google Scholar 

  • Zeder MA, Lapham HA (2010) Assessing the reliability of criteria used to identify postcranial bones in sheep, Ovis, and goats, Capra. J Archaeol Sci 37:2887–2905

    Article  Google Scholar 

  • Zeder MA, Pilaar SE (2009) Assessing the reliability of criteria used to identify mandibles and mandibular teeth of sheep, Ovis, and goats, Capra. J Archaeol Sci 37:225–242

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Zedda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zedda, M., Palombo, M.R., Brits, D. et al. Differences in femoral morphology between sheep (Ovis aries) and goat (Capra hircus): macroscopic and microscopic observations. Zoomorphology 136, 145–158 (2017). https://doi.org/10.1007/s00435-016-0329-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-016-0329-4

Keywords

Navigation