Skip to main content

Advertisement

Log in

Lentivirus-mediated knockdown of CTDP1 inhibits lung cancer cell growth in vitro

  • Original Article – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

CTDP1 catalyzes serine phosphorylation and dephosphorylation of the mobile carboxy-terminal domain of the RNA polymerase II. It is conserved among eukarya and is essential for cell growth for its ability in regulation of transcription machinery. However, its function in the process of tumorigenesis is unclear. In the present study, we aim to explore the roles of CTDP1 in the progression of human lung cancer. To our knowledge, this is the first study that reports the functions of CTDP1 in human lung cancer.

Methods

We first detected the expression level of CTDP1 in four human lung cancer cell lines: H-125, H1299, LTEP-A-2 and NCI-H446 by semiquantitative RT-PCR. We compared the expression level of CTDP1 in lung cancer tissues and paired adjacent normal tissues on 29 pathologically confirmed patients by real-time quantitative PCR. To further explore the effect of CTDP1 on cell proliferation, a lentiviral vector expressing CTDP1 short hairpin RNA (shRNA) was constructed and infected into human lung cell lines H1299. Interference efficiency was determined by western blot analysis and real-time quantitative PCR. The effects of knockdown of CTDP1 on cell growth, cell cycle and apoptosis and cell colony formation were explored by Cellomics, fluorescence-activated cells sorting and fluorescence microscopy, respectively.

Results

CTDP1 was expressed in all four human lung cancer cell lines. The expression of CTDP1 in tumor tissues was significantly higher than paired adjacent normal tissues in 29 patients with lung cancer. The expression of CTDP1 was markedly reduced in cells infected with lentivirus delivering shRNA against CTDP1. Inhibition of CTDP1 expression significantly suppressed cell growth, induced G0/G1 phase arrest and repressed cell colony formation.

Conclusions

Our results demonstrated that CTDP1 was upregulated in human lung cancer tissues. In addition, it implied that CTDP1 played an important role in cell proliferation and may be a useful therapeutic target in human lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alberg AJ, Brock MV, Samet JM (2005) Epidemiology of lung cancer: looking to the future. J Clin Oncol 23:3175–3185

    Article  PubMed  Google Scholar 

  • Brake OT, Konstantinova P, Ceylan M, Berkhout B (2006) Silencing of HIV-1 with RNA interference: a multiple shRNA approach. Mol Ther 14:883–892

    Article  PubMed  Google Scholar 

  • Chambers RS, Wang BQ, Burton ZF, Dahmus ME (1995) The activity of COOH-terminal domain phosphatase is regulated by a docking site on RNA polymerase II and the by the general transcription factors IIF and IIB. J Biol Chem 270:14962–14969

    Article  CAS  PubMed  Google Scholar 

  • Cho H, Kim TK, Mancebo H, Lane WS, Flores O et al (1999) A protein phosphatase functions to recycle RNA polymerase II. Genes Dev 13:1540–1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho EJ, Kobor MS, Kim M, Greenblatt J, Buratowski S (2001) Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev 15:3319–3329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cramer P, Bushnell DA, Kornberg RD (2001) Structural basis of transcription: RNA polymerase II at 2.8 Ångstrom resolution. Science 29:1863–1876

    Article  Google Scholar 

  • D’Amico TA, Massey M, Herndon JE II, Moore MB, Harpole DH Jr (1999) A biologic risk model for stage I lung cancer: immunohistochemical analysis of 408 patients with the use of ten molecular markers. J Thorac Cardiovasc Surg 117:736–743

    Article  PubMed  Google Scholar 

  • Ding XF, Huang GM, Shi Y, Li JA, Fang XD (2012) Med 19 promotes gastric cancer progression and cellular growth. Gene 504(2):262–267

    Article  CAS  PubMed  Google Scholar 

  • Greenblatt MS, Bennett WP, Hollstein M, Harris CC (1994) Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54:4855–4878

    CAS  PubMed  Google Scholar 

  • Haga Y, Hiroshima K, Iyoda A, Shibuya K, Shimamura F, Iizasa T et al (2003) Ki-67 expression and prognosis for smokers with resected stage I non-small cell lung cancer. Ann Thorac Surg 75:1727–1732

    Article  PubMed  Google Scholar 

  • Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW et al (1999) Creation of human tumour cells with defined genetic elements. Nature 400:464–468

    Article  CAS  PubMed  Google Scholar 

  • Han H, Silverman JF, Santucci TS, Macherey RS, d’Amato TA et al (2001) Vascular endothelial growth factor expression in stage I non-small cell lung cancer correlates with neoangiogenesis and a poor prognosis. Ann Surg Oncol 8:72–79

    Article  CAS  PubMed  Google Scholar 

  • Hirsch FR, Herbst RS, Olsen C, Chansky K, Crowley J et al (2008) Increased EGFR gene copy number detected by fluorescent in situ hybridization predicts outcome in non-small-cell lung cancer patients treated with cetuximab and chemotherapy. J Clin Oncol 26:3351–3357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim ES, Hirsh V, Mok T, Socinski MA, Gervais R et al (2008) Gefitinib versus docetaxel in previously treated non-small-cell lung cancer: a randomized phase III trial (INTEREST). Lancet 372:1809–1818

    Article  CAS  PubMed  Google Scholar 

  • Kobor MS, Archambault J, Lester W, Holstege FC, Gileadi O et al (1999) An unusual eukaryotic protein phosphatase required for transcription by RNA polymerase II and CTD dephosphorylation in S. cerevisiae. Mol Cell 4:55–62

    Article  CAS  PubMed  Google Scholar 

  • Li LH, He J, Hua D, Guo ZJ, Gao Q (2011) Lentivirus-mediated inhibition of Med19 suppresses growth of breast cancer cells in vitro. Cancer Chemother Pharmacol 68(1):207–215

    Article  PubMed  Google Scholar 

  • Liao M, Wang H, Lin Z, Feng J, Zhu D (2001) Vascular endothelial growth factor and other biological predictors related to the postoperative survival rate on non-small cell lung cancer. Lung Cancer 33:125–132

    Article  CAS  PubMed  Google Scholar 

  • Licciardo P, Ruggiero L, Lania L, Majello B (2001) Transcription activation by targeted recruitment of the RNA polymerase II CTD phosphatase FCP1. Nucleic Acids Res 29:3539–3545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin PS, Marshall NF, Dahmus ME (2002) CTD phosphatase: role in RNA polymerase II cycling and the regulation of transcript elongation. Prog Nucleic Acid Res Mol Biol 72:333–365

    Article  CAS  PubMed  Google Scholar 

  • Mandal SS, Cho H, Kim S, Cabane K, Reinberg D (2002) FCP1, a phosphatase specific for the heptapeptide repeat of the largest subunit of RNA polymerase II, stimulates transcription elongation. Mol Cell Biol 22:7543–7552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manjunath N, Wu H, Subramanya S, Shankar P (2009) Lentiviral delivery of short hairpin RNAs. Adv Drug Deliv Rev 61:732–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mineo TC, Ambrogi V, Baldi A, Rabitti C, Bollero P et al (2004) Prognostic impact of VEGF, CD31, CD34, and CD105 expression and tumour vessel invasion after radical surgery for IB-IIA non-small cell lung cancer. J Clin Pathol 57:591–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moldvay J, Scheid P, Wild P, Nabil K, Siat J et al (2000) Predictive survival markers in patients with surgically resected non-small cell lung carcinoma. Clin Cancer Res 6:1125–1134

    CAS  PubMed  Google Scholar 

  • O’Byrne KJ, Koukourakis MI, Giatromanolaki A, Cox G, Turley H et al (2000) Vascular endothelial growth factor, platelet-derived endothelial cell growth factor and angiogenesis in non-small-cell lung cancer. Br J Cancer 82:1427–1432

    Article  PubMed  PubMed Central  Google Scholar 

  • Pastorino U, Andreola S, Tagliabue E, Pezzella F, Incarbone M et al (1997) Immunocytochemical markers in stage I lung cancer: relevance to prognosis. J Clin Oncol 15:2858–2865

    CAS  PubMed  Google Scholar 

  • Phatnani HP, Greenleaf AL (2006) Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev 20:2922–2936

    Article  CAS  PubMed  Google Scholar 

  • Qin XF, An DS, Chen IS, Baltimore D (2003) Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci USA 100:183–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato M, Shames DS, Gazdar AF, Minna JD (2007) A translational view of the molecular pathogenesis of lung cancer. J Thorac Oncol 2:327–343

    Article  PubMed  Google Scholar 

  • Scagliotti G, Novello S (2003) Adjuvant chemotherapy after complete resection for early stage NSCLC. Lung Cancer 42:S47–S51

    Article  PubMed  Google Scholar 

  • Son S, Osmani SA (2009) Analysis of all protein phosphatase genes in Aspergillus nidulans identifies a new mitotic regulator, fcp1. Eukaryot Cell 8(4):573–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun S, Schiller JH, Gazdar AF (2007) Lung cancer in never smokers: a different disease. Nat Rev Cancer 7:778–790

    Article  CAS  PubMed  Google Scholar 

  • Tammemagi MC, McLaughlin JR, Bull SB (1999) Meta-analyses of p53 tumor suppressor gene alterations and clinicopathological features in resected lung cancers. Cancer Epidemiol Biomark Prev 8:625–634

    CAS  Google Scholar 

  • Tang X, Shigematsu H, Bekele BN, Roth JA, Minna JD et al (2005) EGFR tyrosine kinase domain mutations are detected in histologically normal respiratory epithelium in lung cancer patients. Cancer Res 65:7568–7572

    CAS  PubMed  Google Scholar 

  • Weihua Z, Tsan R, Huang WC, Wu Q, Chiu CH et al (2008) Survival of cancer cells is maintained by EGFR independent of its kinase activity. Cancer Cell 13:385–393

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright PA, Quirke P, Attanoos R, Williams GT (1992) Molecular pathology of gastric carcinoma: progress and prospects. Hum Pathol 23(8):848–859

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Chini CC, He M, Mer G, Chen J (2003) The BRCT domain is a phospho-protein binding domain. Science 302:639–642

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China (Grant number: 81201770 81472642) , Shanghai committee of science and technology (Grant number: 14430723300, 124119a6300), Shanghai Chest Hospital Key Project (2014YZDC20700).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Zhong or Baohui Han.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Runbo Zhong and Xiaoxiao Ge contribute equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, R., Ge, X., Chu, T. et al. Lentivirus-mediated knockdown of CTDP1 inhibits lung cancer cell growth in vitro. J Cancer Res Clin Oncol 142, 723–732 (2016). https://doi.org/10.1007/s00432-015-2070-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-015-2070-7

Keywords

Navigation