Skip to main content

Advertisement

Log in

Lentivirus-mediated inhibition of Med19 suppresses growth of breast cancer cells in vitro

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The mediator is a large multiprotein complex vital for transcription regulation. Human Med19 is a critical subunit of the mediator complex and plays an important role in stabilizing the whole mediator. To understand the role and mechanism of Med19 in breast cancer, we carried out studies on the impacts of lentivirus-mediated inhibition of Med19 on breast cancer cells in vitro.

Method

The expression of Med19 in breast cancer tissue was detected using immunohistochemical analysis. The impacts of lentivirus-mediated inhibition of Med19 on breast cancer cells were detected using flow cytometric, cell proliferation, BrdU incorporation, and colony formation assays.

Results

The upregulated expression of Med19 was found in breast cancer tissues. Med19 expression was significantly associated with tumor grade (p = 0.026). The expression of Med19 was strongly suppressed in human breast cancer MDA-MB-231 and MCF-7 cells infected with lentiviruses delivering small hairpin RNA (shRNA) against Med19. The inhibition of Med19 elicited augmentation of G0/G1 phase proportion and significantly attenuated the growth of MDA-MB-231 and MCF-7 cells in vitro.

Conclusion

Med19 plays an important role in the proliferation of human breast cancer cells, which suggested that the lentiviruses delivering shRNA against Med19 could be a promising tool for breast cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Boube M, Joulia L, Cribbs DL, Bourbon HM (2002) Evidence for a mediator of RNA polymerase II transcriptional regulation conserved from yeast to man. Cell 110:143–151

    Article  PubMed  CAS  Google Scholar 

  2. Rosenblum-Vos LS, Rhodes L, Evangelista CC Jr, Boayke KA, Zitomer RS (1991) The ROX3 gene encodes an essential nuclear protein involved in CYC7 gene expression in Saccharomyces cerevisiae. Mol Cell Biol 11:5639–5647

    PubMed  CAS  Google Scholar 

  3. Gustafsson CM, Myers LC, Li Y, Redd MJ, Lui M, Erdjument-Bromage H, Tempst P, Kornberg RD (1997) Identification of Rox3 as a component of mediator and RNA polymerase II holoenzyme. J Biol Chem 272:48–50

    Article  PubMed  CAS  Google Scholar 

  4. Chadick JZ, Asturias FJ (2005) Structure of eukaryotic Mediator complexes. Trends Biochem Sci 30:264–271

    Article  PubMed  CAS  Google Scholar 

  5. Beve J, Hu GZ, Myers LC, Balciunas D, Werngren O, Hultenby K, Wibom R, Ronne H, Gustafsson CM (2005) The structural and functional role of Med5 in the yeast Mediator tail module. J Biol Chem 280:41366–41372

    Article  PubMed  CAS  Google Scholar 

  6. Singh H, Erkine AM, Kremer SB, Duttweiler HM, Davis DA, Iqbal J, Gross RR, Gross DS (2006) A functional module of yeast mediator that governs the dynamic range of heat-shock gene expression. Genetics 172:2169–2184

    Article  PubMed  CAS  Google Scholar 

  7. Baidoobonso SM, Guidi BW, Myers LC (2007) Med19 (Rox3) regulates Intermodule interactions in the Saccharomyces cerevisiae mediator complex. J Biol Chem 282:5551–5559

    Article  PubMed  CAS  Google Scholar 

  8. Ding N, Tomomori-Sato C, Sato S, Conaway RC, Conaway JW, Boyer TG (2009) MED19 and MED26 are synergistic functional targets of the RE1 silencing transcription factor in epigenetic silencing of neuronal gene expression. J Biol Chem 284:2648–2656

    Article  PubMed  CAS  Google Scholar 

  9. Castanotto D, Rossi JJ (2009) The promises and pitfalls of RNA-interference-based therapeutics. Nature 457:426–433

    Article  PubMed  CAS  Google Scholar 

  10. Haasnoot J, Westerhout EM, Berkhout B (2007) RNA interference against viruses: strike and counterstrike. Nat Biotechnol 25:1435–1443

    Article  PubMed  CAS  Google Scholar 

  11. Li CI, Daling JR, Malone KE (2005) Age-specific incidence rates of in situ breast carcinomas by histologic type, 1980 to 2001. Cancer Epidemiol Biomarkers Prev 14:1008–1011

    Article  PubMed  Google Scholar 

  12. Allgayer H, Fulda S (2008) An introduction to molecular targeted therapy of cancer. Adv Med Sci 53:130–138

    Article  PubMed  CAS  Google Scholar 

  13. Nishitsuji H, Ikeda T, Miyoshi H, Ohashi T, Kannagi M, Masuda T (2004) Expression of small hairpin RNA by lentivirus-based vector confers efficient and stable gene-suppression of HIV-1 on human cells including primary non-dividing cells. Microbes Infect 6:76–85

    Article  PubMed  CAS  Google Scholar 

  14. Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J, Rooney DL, Zhang M, Ihrig MM, McManus MT, Gertler FB, Scott ML, Van Parijs L (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 33:401–406

    Article  PubMed  CAS  Google Scholar 

  15. Pullmann R Jr, Juhaszova M, Lopez de Silanes I, Kawai T, Mazan-Mamczarz K, Halushka MK, Gorospe M (2005) Enhanced proliferation of cultured human vascular smooth muscle cells linked to increased function of RNA-binding protein HuR. J Biol Chem 280:22819–22826

    Article  PubMed  CAS  Google Scholar 

  16. Zielske SP, Stevenson M (2005) Importin 7 may be dispensable for human immunodeficiency virus type 1 and simian immunodeficiency virus infection of primary macrophages. J Virol 79:11541–11546

    Article  PubMed  CAS  Google Scholar 

  17. Sakoda T, Kasahara N, Hamamori Y, Kedes L (1999) A high-titer lentiviral production system mediates efficient transduction of differentiated cells including beating cardiac myocytes. J Mol Cell Cardiol 31:2037–2047

    Article  PubMed  CAS  Google Scholar 

  18. Soneoka Y, Cannon PM, Ramsdale EE, Griffiths JC, Romano G, Kingsman SM, Kingsman AJ (1995) A transient three-plasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Res 23:628–633

    Article  PubMed  CAS  Google Scholar 

  19. Tiscornia G, Singer O, Verma IM (2006) Production and purification of lentiviral vectors. Nat Protoc 1:241–245

    Article  PubMed  CAS  Google Scholar 

  20. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36

    Article  PubMed  Google Scholar 

  21. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553

    Article  PubMed  CAS  Google Scholar 

  22. Xia H, Mao Q, Paulson HL, Davidson BL (2002) siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol 20:1006–1010

    Article  PubMed  CAS  Google Scholar 

  23. Brummelkamp TR, Bernards R, Agami R (2002) Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2:243–247

    Article  PubMed  CAS  Google Scholar 

  24. Qin XF, An DS, Chen IS, Baltimore D (2003) Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci USA 100:183–188

    Article  PubMed  CAS  Google Scholar 

  25. ter Brake O, Konstantinova P, Ceylan M, Berkhout B (2006) Silencing of HIV-1 with RNA interference: a multiple shRNA approach. Mol Ther 14:883–892

    Article  PubMed  CAS  Google Scholar 

  26. Manjunath N, Wu H, Subramanya S, Shankar P (2009) Lentiviral delivery of short hairpin RNAs. Adv Drug Deliv Rev 61:732–745

    Article  PubMed  CAS  Google Scholar 

  27. Bank A, Dorazio R, Leboulch P (2005) A phase I/II clinical trial of beta-globin gene therapy for beta-thalassemia. Ann N Y Acad Sci 1054:308–316

    Article  PubMed  CAS  Google Scholar 

  28. Manilla P, Rebello T, Afable C, Lu X, Slepushkin V, Humeau LM, Schonely K, Ni Y, Binder GK, Levine BL, MacGregor RR, June CH, Dropulic B (2005) Regulatory considerations for novel gene therapy products: a review of the process leading to the first clinical lentiviral vector. Hum Gene Ther 16:17–25

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors were thankful for the financial support from the Scientific and Technologic Bureau of Wuxi (CSE00708 and CAE00801-08-“333 project of Jiangsu Province”).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Hua Li or Zi-Jian Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, LH., He, J., Hua, D. et al. Lentivirus-mediated inhibition of Med19 suppresses growth of breast cancer cells in vitro. Cancer Chemother Pharmacol 68, 207–215 (2011). https://doi.org/10.1007/s00280-010-1468-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-010-1468-9

Keywords

Navigation