Skip to main content
Log in

Simultaneous activation of T helper function can augment the potency of dendritic cell-based cancer immunotherapy

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Simultaneous activation of T helper 1 (Th1) cell function has crucial roles in induction of potent cytotoxic T lymphocyte (CTL) responses in cancer immunotherapy. Here, we investigated whether dendritic cell (DC)-based vaccines loaded with both tumor-associated antigen (TAA)-derived MHC class I and pan-MHC class II peptides could elicit more potent CTL responses through simultaneous activation of Th1 function and reduction in CD4+ regulatory T (Treg) cell proliferation.

Methods

C57BL/6 mice bearing LLC1, a mouse Lewis lung cancer cell line, were subcutaneously administered DCs loaded with both LLC-derived MHC class I (MUT1&2) and LLC-unrelated pan-MHC class II (PADRE) peptides (DC-MUT1&2-PADRE). In assays using samples from advanced lung cancer patients, peripheral blood mononuclear cells were stimulated with autologous DCs loaded with both MUC1 MHC class I and PADRE peptides (DC-MUC1-PADRE) in vitro. Subsequently, TAA-specific CTL responses and the population of CD4+ Treg cells were analyzed.

Results

The population of spleen CD4+ PADRE-specific cells producing interferon-gamma (IFNγ) was significantly increased by DC-MUT1&2-PADRE administration. Vaccinations with DC-MUT1&2-PADRE decreased the population of CD4+ Treg cells in spleen and augmented CTL responses, effectively leading to suppression of tumor growth. In assays with human samples, CD4+ Treg cells were induced less frequently, and MUC1-specific cytotoxicity was enhanced by stimulation with DC-MUC1-PADRE compared with that by stimulation with DC-MUC1 alone.

Conclusions

Simultaneous activation of Th1 function by DCs loaded with both TAA-derived MHC class I and PADRE peptides augments TAA-specific CTL responses while reducing Treg cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aarntzen EH, Schreibelt G, Bol K, Lesterhuis WJ, Croockewit AJ, de Wilt JH, van Rossum MM, Blokx WA, Jacobs JF, Duiveman-de Boer T, Schuurhuis DH, Mus R, Thielemans K, de Vries IJ, Figdor CG, Punt CJ, Adema GJ (2012) Vaccination with mRNA-electroporated dendritic cells induces robust tumor antigen-specific CD4+ and CD8+ T cells responses in stage III and IV melanoma patients. Clin Cancer Res 18:5460–5470

    Article  PubMed  CAS  Google Scholar 

  • Alexander J, Sidney J, Southwood S, Ruppert J, Oseroff C, Maewal A, Snoke K, Serra HM, Kubo RT, Sette A, Grey HM (1994) Development of high potency universal DR-restricted helper epitopes by modification of high affinity DR-blocking peptides. Immunity 1:751–761

    Article  PubMed  CAS  Google Scholar 

  • Angiolillo AL, Sgadari C, Taub DD, Liao F, Faber JM, Maheshwari S, Kleinman HK, Reaman GH, Tosato G (1995) Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. J Exp Med 182:155–162

    Article  PubMed  CAS  Google Scholar 

  • Chu CS, Boyer J, Schullery DS, Gimotty PA, Gamerman V, Bender J, Levine BL, Coukos G, Rubin SC, Morgan MA, Vonderheide RH, June CH (2012) Phase I/II randomized trial of dendritic cell vaccination with or without cyclophosphamide for consolidation therapy of advanced ovarian cancer in first or second remission. Cancer Immunol Immunother 61:629–641

    Article  PubMed  CAS  Google Scholar 

  • Geiger JD, Hutchinson RJ, Hohenkirk LF, McKenna EA, Yanik GA, Levine JE, Chang AE, Braun TM, Mulé JJ (2001) Vaccination of pediatric solid tumor patients with tumor lysate-pulsed dendritic cells can expand specific T cells and mediate tumor regression. Cancer Res 61:8513–8519

    PubMed  CAS  Google Scholar 

  • Hung CF, Tsai YC, He L, Wu TC (2007) DNA vaccines encoding Ii-PADRE generates potent PADRE-specific CD4+ T-cell immune responses and enhances vaccine potency. Mol Ther 15:1211–1219

    PubMed  CAS  Google Scholar 

  • Ichihara F, Kono K, Takahashi A, Kawaida H, Sugai H, Fujii H (2005) Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin Cancer Res 9:4404–4408

    Google Scholar 

  • Itoh Y, Ogasawara K, Takami K, Gotohda T, Naruse H, Good RA, Onoé K (1994) Determination of amino acids on agretopes of pigeon cytochrome c-related peptides specifically bound to I-A allelic products. Eur J Immunol 24:76–83

    Article  PubMed  CAS  Google Scholar 

  • Itoh Y, Kajino K, Ogasawara K, Takahashi A, Namba K, Negishi I, Matsuki N, Iwabuchi K, Kakinuma M, Good RA, Onoé K (1997) Interaction of pigeon cytochrome c-(43–58) peptide analogs with either T cell antigen receptor or I-Ab molecule. Proc Natl Acad Sci USA 94:12047–12052

    Article  PubMed  CAS  Google Scholar 

  • Janikashvili N, LaCasse CJ, Lamonier C, Trad M, Herrell A, Bustamante S, Bonnotte B, Har-Noy M, Lamonier N, Katasanis E (2011) Allogeneic effector/memory Th-1 cells impair FoxP3 regulatory T lymphocytes and synergize with chaperone-rich cell lysate vaccine to treat leukemia. Blood 117:1555–1564

    Article  PubMed  CAS  Google Scholar 

  • Kato M, Nakamura Y, Suda T, Ozawa Y, Inui N, Seo N, Nagata T, Koide Y, Kalinski P, Nakamura H, Chida K (2011) Enhanced anti-tumor immunity by superantigen-pulsed dendritic cells. Cancer Immunol Immunother 60:1029–1038

    Article  PubMed  Google Scholar 

  • Knutson KL, Disis ML (2005) Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother 54:721–728

    Article  PubMed  CAS  Google Scholar 

  • Kontani K, Taguchi O, Ozaki Y, Hanaoka J, Sawai S, Inoue S, Abe H, Hanasawa K, Fujino S (2003) Dendritic cell vaccine immunotherapy of cancer targeting MUC1 mucin. Int J Mol Med 12:493–502

    PubMed  CAS  Google Scholar 

  • Kontani K, Teramoto K, Ozaki Y, Sawai S, Tezuka N, Ishida H, Kajino K, Fujino S, Yamauchi A, Taguchi O, Kannagi R, Yokomise H, Ogasawara K (2007) Preparation of fully activated dendritic cells capable of priming tumor-specific cytotoxic T lymphocytes in patients with metastatic cancer using penicillin-killed streptococcus pyogenes (OK432) and anti-CD40 antibody. Oncol Rep 17:895–902

    PubMed  CAS  Google Scholar 

  • Lesterhuis WJ, Aarntzen EH, de Vries IJ, Schuurhuis DH, Figdor CG, Adema GJ, Punt CJ (2008) Dendritic cell vaccines in melanoma: from promise to proof? Crit Rev Oncol Hematol 66:118–134

    Article  PubMed  CAS  Google Scholar 

  • Lesterhuis WJ, de Vries IJ, Schreibelt G, Lambeck AJ, Aarntzen EH, Jacobs JF, Scharenborg NM, van de Rakt MW, de Boer AJ, Croockewit S, van Rossum MM, Mus R, Oyen WJ, Boerman OC, Lucas S, Adema GJ, Punt CJ, Figdor CG (2011) Route of administration modulates the induction of dendritic cell vaccine-induced antigen-specific T cells in advanced melanoma patients. Clin Cancer Res 17:5725–5735

    Article  PubMed  CAS  Google Scholar 

  • Mandelboim O, Bar-Haim E, Vadai E, Fridkin M, Eisenbach L (1997) Identification of shared tumor-associated antigen peptides between two spontaneous lung carcinomas. J Immunol 159:6030–6056

    PubMed  CAS  Google Scholar 

  • Okada H, Kalinski P, Ueda R, Hoji A, Kohanbash G, Donegan TE, Mintz AH, Engh JA, Bartlett DL, Brown CK, Zeh H, Holtzman MP, Reinhart TA, Whiteside TL, Butterfield LH, Hamilton RL, Potter DM, Pollack IF, Salazar AM, Lieberman FS (2011) Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol 29:330–336

    Article  PubMed  CAS  Google Scholar 

  • Pardoll DM, Topalian SL (1998) The role of CD4+ T cell response in antitumor immunity. Curr Opin Immunol 10:588–594

    Article  PubMed  CAS  Google Scholar 

  • Park JY, Jin DH, Lee CM, Jang MJ, Lee SY, Shin HS, Chung YH, Kim KY, Kim SS, Lee WB, Shin YK, Lee WJ, Park YM, Kim D (2010) CD4+ TH1 cells generated by Ii-PADRE DNA at prime phase are important to induce effectors and memory CD8+ T cells. J Immunother 33:510–522

    Article  PubMed  CAS  Google Scholar 

  • Schultz ES, Schuler-Thurner B, Stroobant V, Jenne L, Berger TG, Thielemanns K, van der Bruggen P, Schuler G (2004) Functional analysis of tumor-specific Th cell responses detected in melanoma patients after dendritic cell-based immunotherapy. J Immunol 172:1304–1310

    Google Scholar 

  • Shimizu K, Thomas EK, Giedlin M, Mule JJ (2001) Enhancement of tumor lysate- and peptide-pulsed dendritic cell-based vaccines by the addition of foreign helper protein. Cancer Res 61:2618–2624

    PubMed  CAS  Google Scholar 

  • Takahashi N, Ohkuni T, Homma S, Ohtake J, Wakita T, Togashi Y, Kitamura H, Todo S, Nishimura T (2012) First clinical trial of cancer vaccine therapy with artificially synthesized helper/killer-hybrid epitope long peptide of MAGE-A4 cancer antigen. Cancer Sci 103:150–153

    Article  PubMed  CAS  Google Scholar 

  • Tatsumi T, Takehara T, Kanto T, Miyagi T, Kazushita N, Sugimoto Y, Jinushi M, Kasahara A, Sasaki Y, Hori M, Hayashi N (2001) Administration of interleukin-12 enhances the therapeutic efficacy of dendritic cell-based tumor vaccines in mouse hepatocellular carcinoma. Cancer Res 61:7563–7567

    PubMed  CAS  Google Scholar 

  • Teramoto K, Kontani K, Ozaki Y, Sawai S, Tezuka N, Nagata T, Fujino S, Itoh Y, Taguchi O, Koide Y, Asai T, Ohkubo I, Ogasawara K (2003) Deoxyribonucleic acid (DNA) encoding a pan-major histocompatibility complex class II peptide analogue augmented antigen-specific cellular immunity and suppressive effects on tumor growth elicited by DNA vaccine immunotherapy. Cancer Res 63:7920–7925

    PubMed  CAS  Google Scholar 

  • Teramoto K, Kontani K, Fujita T, Ozaki Y, Sawai S, Tezuka N, Fujino S, Itoh Y, Taguchi O, Kannagi R, Ogasawara K (2007) Successful tumor eradication was achieved by collaboration of augmented cytotoxic activity and anti-angiogenic effects following therapeutic vaccines containing helper-activating analog-loaded dendritic cells and tumor antigen DNA. Cancer Immunol Immunother 56:331–342

    Article  PubMed  CAS  Google Scholar 

  • Wierecky J, Müller MR, Wirths S, Halder-Oehler E, Dörfel D, Schmidt SM, Häntschel M, Brugger W, Schröder S, Horger MS, Kanz L, Brossart P (2006) Immunologic and clinical responses after vaccinations with peptide-pulsed dendritic cells in metastatic renal cancer patients. Cancer Res 66:5910–5918

    Article  PubMed  CAS  Google Scholar 

  • Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B (2003) Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 9:606–612

    PubMed  Google Scholar 

  • Zaliauskiene L, Kang S, Sparks K, Zinn KR, Schwiebert LM, Weaver CT, Lollawn JF (2002) Enhancement of MHC class II-restricted responses by receptor-mediated uptake of peptide antigens. J Immunol 169:2337–2345

    PubMed  CAS  Google Scholar 

  • Zhou Y, Bosch ML, Salgaller ML (2002) Current methods for loading dendritic cells with tumor antigen for the induction of antitumor immunity. J Immunother 25:283–303

    Article  Google Scholar 

Download references

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Teramoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teramoto, K., Ohshio, Y., Fujita, T. et al. Simultaneous activation of T helper function can augment the potency of dendritic cell-based cancer immunotherapy. J Cancer Res Clin Oncol 139, 861–870 (2013). https://doi.org/10.1007/s00432-013-1394-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-013-1394-4

Keywords

Navigation