Skip to main content

Advertisement

Log in

Successful tumor eradication was achieved by collaboration of augmented cytotoxic activity and anti-angiogenic effects following therapeutic vaccines containing helper-activating analog-loaded dendritic cells and tumor antigen DNA

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

We reported previously that pigeon cytochrome c-derived peptides (Pan-IA), which bind broad ranges of MHC class II molecules efficiently, activate T helper (Th) function in mice. In an experimental model, Pan-IA DNA vaccines augmented antitumor immunity in tumor antigen-immunized mice. To elicit more potent antitumor immunity and to eradicate tumors in a therapeutic setting, Pan-IA-loaded dendritic cells (DCs) were inoculated in combination with vaccines including ovalbumin (OVA) antigen DNA in tumor-bearing mice. Seventy percent of the immunized mice survived tumor-free for at least 4 months after treatment. In contrast, mice vaccinated with OVA DNA, either with or without naïve DCs, did not eliminate the tumors and died within 5 weeks. Only in mice vaccinated with OVA DNA and Pan-IA-loaded DCs were both cytotoxic and helper responses specific for OVA induced at the spleen and tumor sites as well as at the vaccination sites. Furthermore, accumulation of OVA-specific CD4+ and CD8+ T lymphocytes and interferon-gamma-mediated anti-angiogenesis were observed in the tumors of these mice. Thus, the combined vaccination primed both tumor-specific cytotoxicity and helper immunity resulting in augmented tumor lysis ability and anti-angiogenic effects. This is the first report to show that most established tumors were successfully eradicated by collaboration of potent antitumor immunity and anti-angiogenic effects by vaccination with tumor antigens and helper-activating analogs. This novel vaccination strategy is broadly applicable, regardless of identifying helper epitopes in target molecules, and contributes to the development of therapeutic cancer vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Reference

  1. Qin Z, Richter G, Schuler T, Ibe S, Cao X, Blankenstein T (1998) B cells inhibit induction of T cell-dependent tumor immunity. Nat Med 4:627–630

    Article  PubMed  CAS  Google Scholar 

  2. Ossendorp F, Mengede E, Camps M, Filius R, Melief CJ (1998) Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors. J Exp Med 187:693–702

    Article  PubMed  CAS  Google Scholar 

  3. Fayolle C, Deriaud E, Leclerc C (1991) In vivo induction of cytotoxic T cell response by a free synthetic peptide requires CD4+ T cell help. J Immunol 147:4069–4073

    PubMed  CAS  Google Scholar 

  4. Hart MK, Weinhold KJ, Scearce RM, Washburn EM, Clark CA, Palker TJ, Haynes BF (1991) Priming of anti-human immunodeficiency virus (HIV) CD8+ cytotoxic T cell in vivo by carrier-free HIV synthetic peptide. Proc Natl Acad Sci USA 88:9448–9452

    Article  PubMed  CAS  Google Scholar 

  5. Lasarte JJ, Sarobe P, Gullon A, Prieto J, Borras-Cuesta F (1992) Induction of cytotoxic T lymphocytes in mice against the principal neutralizing domain of HIV-1 by immunization with an engineered T-cytotoxic-T-helper synthetic peptide construct. Cell Immunol 141:211–218

    Article  PubMed  CAS  Google Scholar 

  6. Shirai M, Pendleton CD, Ahler J, Takeshita T, Newman M, Berzofsky JA (1994) Helper-cytotoxic T lymphocyte (CTL) determinant linkage required for priming of anti-HIV CD8+ CTL in vivo with peptide vaccine constructs. J Immunol 152:549–556

    PubMed  CAS  Google Scholar 

  7. Kontani K, Taguchi O, Ozaki Y, Hanaoka J, Tezuka N, Sawai S, Inoue S, Fujino S, Maeda T, Itoh Y, Ogasawara K, Sato H, Ohkubo I, Kudo T (2002) Novel vaccination protocol consisting of injecting MUC1 DNA and nonprimed dendritic cell at the same region greatly enhanced MUC1-specific antitumor immunity in a murine model. Cancer Gene Ther 9:330–337

    Article  PubMed  CAS  Google Scholar 

  8. Teramoto K, Kontani K, Ozaki Y, Sawai S, Tezuka N, Nagata T, Fujino S, Itoh Y, Taguchi O, Koide Y, Asai T, Ohkubo I, Ogasawara K (2003) Deoxyribonucleic acid (DNA) encoding a pan-major histocompatibility complex class II peptide analogue augmented antigen-specific cellular immunity and suppressive effects on tumor growth elicited by DNA vaccine immunotherapy. Cancer Res 63:7920–7925

    PubMed  CAS  Google Scholar 

  9. Minci S, Sturniolo T, Imro MA, Hammer J, Sinigaglia F, Noppen C, Spagnoli G, Mazzi B, Bellone M, Dellabona P, Protti MP (1999) Melanoma cells present a MAGE-3 epitope to CD4(+) cytotoxic T cells in association with histocompatibility leukocyte antigen DR11. J Exp Med 189:753–756

    Article  Google Scholar 

  10. Kobayashi H, Wood M, Song Y, Appella E, Celis E (2000) Defining promiscuous MHC class II helper T-cell epitopes for the HER2/neu tumor antigen. Cancer Res 60:5228–5236

    PubMed  CAS  Google Scholar 

  11. Zarour HM, Maillere B, Brusic V, Coval K, Williams E, Pouvelle-Moratille S, Castelli F, Land S, BennounaJ, Logan T, Kirkwood JM (2002) NY-ESO-1 119–143 is a promiscuous major histocompatibility complex class II T-helper epitope recognized by Th1- and Th2-type tumor reactive CD4+ T cells. Cancer Res 62:213–218

    PubMed  CAS  Google Scholar 

  12. Casares N, Lasarte JJ, Lopez-Diaz de Cerio L, Sarobe P, Ruiz M, Melero I, Prieto J, Borras-Cuesta F (2001) Immunization with a tumor-associated CTL epitope plus a tumor-related or unrelated Th1 helper peptide elicits protective CTL immunity. Eur J Immunol 31:1780–1789

    Article  PubMed  CAS  Google Scholar 

  13. Itoh Y, Ogasawara K, Takami K, Gotohda T, Naruse H, Good RA, Onoe K (1994) Determination of amino acids on agretopes of pigeon cytochrome c-related peptides specifically bound to I-A allelic products. Eur J Immunol 24:76–83

    PubMed  CAS  Google Scholar 

  14. Itoh Y, Kajino K, Ogasawara K, Katoh M, Namba K, Iwabuchi K, Braunstein NS, Onoe K (1996) Determination of the allele-specific antigen-binding site on I-Ak and I-Ab molecules. Eur J Immunol 26:1314–1321

    PubMed  CAS  Google Scholar 

  15. Beatty GL, Paterson Y (2001) IFN-γ-dependent inhibition of tumor angiogenesis by tumor-infiltrating CD4+ T cells requires tumor responsiveness to IFN-γ. J Immunol 166:2276–2282

    PubMed  CAS  Google Scholar 

  16. Qin Z, Schwartzkopff J, Pradera F, Kammertoens, Seliger B, Pircher H, Blankenstein T (2003) A critical requirement of interferon γ-mediated angiogenesis for tumor rejection by CD8+ T cells. Cancer Res 63:4095–4100

    PubMed  CAS  Google Scholar 

  17. Toldbod HE, Agger R, Bolund L, Hokland M (2003) Potent influence of bovine serum proteins in experimental dendritic cell-based vaccination protocol. Scand J Immunol 58:43–50

    Article  PubMed  CAS  Google Scholar 

  18. Ronchese F, Brown MA, Germain RN (1987) Structure-function analysis of the abm 12 beta mutation using site-directed mutagenesis and DNA-mediated gene transfer. J Immunol 139:629–638

    PubMed  CAS  Google Scholar 

  19. Robertson JM, Jensen PE, Evavold BD (2000) DO11.10 and OT-II T cells recognize a c-terminal ovalbumin. J Immunol 164:4706–4712

    PubMed  CAS  Google Scholar 

  20. Passaniti A., Taylor RM, Pili R, Guo Y, Long PV, Haney JA, Pauly RR, Grant DS, Martin GR (1992) A simple quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin and fibroblast growth factor. Lab Invest 67:519–528

    PubMed  CAS  Google Scholar 

  21. Restifo NP, Spiess PJ, Karp SE, Mule JJ, Rosenberg SA (1992) A nonimmunologenic sarcoma transduced with the cDNA for interferon γ elicits CD8+ T cells against the wild-type tumor: correlation with antigen presentation capability. J Exp Med 175:1423–1431

    Article  PubMed  CAS  Google Scholar 

  22. Paul WE, Seder RA (1996) Lymphocyte responses and cytokines. Cell 1994;76:241–251

    Google Scholar 

  23. Mosmann TR, Sad S (1996) The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 17:138–146

    Article  PubMed  CAS  Google Scholar 

  24. Ridge JP, Rosa FD, Matzinger P (1998) A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393:474–477

    Article  PubMed  CAS  Google Scholar 

  25. Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR (1998) Help for cytotoxic-T-cell responses is mediated by CD40 signaling. Nature 393:478–479

    Article  PubMed  CAS  Google Scholar 

  26. Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ (1998) T-cell help for cytotoxic lymphocytes is mediated by CD40-CD40L interaction. Nature 393:480–482

    Article  PubMed  CAS  Google Scholar 

  27. den Haan JM, Bevan MJ (2000) A novel helper role for CD4 T cells. Proc Natl Acad Sci USA 97:12950–12952

    Article  Google Scholar 

  28. Ulmer JB, DeWitt CM, Chastain M, Friedman A, Donnelly JJ, McClements WL, Caulfield MJ, Bohannon KE, Volkin DB, Evans RK (1999) Enhancement of DNA vaccine potency using conventional aluminum adjuvants. Vaccine 8:18–28

    Article  Google Scholar 

  29. Ebhardt MB, Shive CL, Guardia R, Gapin L, Boehm BO, Forsthuber TG (2002) Immunological adjuvants efficiently induce antigen-specific T cell responses in mice: implication for vaccine adjuvant development in aged individuals. Cell Immunol 215:87–97

    Article  PubMed  CAS  Google Scholar 

  30. Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL, Restifo NP, Schwartz M, Spiess PJ, Wunderlich JR, Seipp CA, Einborn JH, Rogers-Freezer L, White DE (1995) Impact of cytokine administration on the generation of antitumor reactivity in patients with metastatic melanoma receiving a peptide vaccine. J Immunol 163:1690–1695

    Google Scholar 

  31. Tatsumi T, Takehara T, Kanto T, Miyagi T, Kazushita N, Sugimoto Y, Jinushi M, Kasahara A, Sasaki Y, Hori M, Hayashi N (2001) Administration of interleukin-12 enhances the therapeutic efficacy of dendritic cell-based tumor vaccines in mouse hepatocellular carcinoma. Cancer Res 61:7563–7567

    PubMed  CAS  Google Scholar 

  32. Shimizu K, Thomas EK, Giedlin M, Mule JJ (2001) Enhancement of tumor lysate- and peptide-pulsed dendritic cell-based vaccines by the addition of foreign helper protein. Cancer Res 61:2618–2624

    PubMed  CAS  Google Scholar 

  33. Zaliauskiene L, Kang S, Sparks K, Zinn KR, Schwiebert LM, Weaver CT, Lollawn JF (2002) Enhancement of MHC class II-restricted responses by receptor-mediated uptake of peptide antigens. J Immunol 169:2337–2345

    PubMed  CAS  Google Scholar 

  34. Angiolillo AL, Sgadari C, Taub DD, Liao F, Faber JM, Maheshwari S, Kleinman HK, Reaman GH, Tosato G (1995) Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. J Exp Med 182:155–162

    Article  PubMed  CAS  Google Scholar 

  35. Arenberg DA, Kunkel SL, Polverini PJ, Morris SB, Burdick MD, Glass MC, Taub DT, Iannettoni MD, Whyte RI, Strieter RM (1996) Interferon-γ-inducible protein 10 (IP-10) is an angiostatic factor that inhibits human non-small cell lung cancer (NSCLC) tumorigenesis and spontaneous metastasis. J Exp Med 184:981–992

    Article  PubMed  CAS  Google Scholar 

  36. Sgadari C, Farber JM, Angiolillo AL, Liao F, Teryua-Feldstein J, Burd PR, Yao L, Gupta G, Kanegane C, Tosato G (1997) Mig, the monokine induced by interferon-γ promotes tumor necrosis in vivo. Blood 89:2635–2643

    PubMed  CAS  Google Scholar 

  37. Strieter RM, Polverini PJ, Arenberg DA, Kunkel SL (1995) The role of CXC chemokine as regulators of angiogenesis. Shock 4:155–160

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported in part by grant-in-aid for scientific research from the Ministry of Education, Science, Sports and Culture, Japan (Nos. 13671380, 14571262, 15591340, and 16591392) and grant from YASUDA Medical Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiichi Kontani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teramoto, K., Kontani, K., Fujita, T. et al. Successful tumor eradication was achieved by collaboration of augmented cytotoxic activity and anti-angiogenic effects following therapeutic vaccines containing helper-activating analog-loaded dendritic cells and tumor antigen DNA. Cancer Immunol Immunother 56, 331–342 (2007). https://doi.org/10.1007/s00262-006-0192-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-006-0192-0

Keywords

Navigation