Skip to main content

Advertisement

Log in

Transcutaneous PCO2 monitoring in infants hospitalized with viral bronchiolitis

  • Original Article
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Our objective was to assess within a feasibility study the correlation and agreement of transcutaneous carbon dioxide (PtcCO2) monitoring with venous carbon dioxide (PvCO2) in infants with bronchiolitis in the emergency room (ER) and pediatric department. Sixty infants (aged 3.6 ± 3.3 months) admitted to our ER with bronchiolitis were included. PtcCO2 measurements (SenTec Digital Monitoring System) collected prospectively were compared with simultaneous PvCO2 drawn for patient care. Analysis included 100 measurements. The correlation of PtcCO2 and PvCO2 (r = 0.71, p < 0.001) was good, and the agreement (mean difference ± standard deviation of the differences 1.9 ± 7.0 mmHg) was adequate; average PtcCO2 was slightly lower than PvCO2. Changes in PtcCO2 and PvCO2 for consecutive measurements within each patient correlated (r = 0.41, p < 0.01). The level of PtcCO2 correlated with disease severity clinical score (p < 0.001).

Conclusions: PtcCO2 monitoring was feasible in the ER and pediatric department and was found to have a good correlation and adequate agreement with PvCO2 in infants with bronchiolitis. Because the standard deviation of the differences was relatively high, though comparable to the literature, we suggest that PtcCO2 should not replace blood gas but rather serve as a complementary tool for trending and for real-time continuous assessment of the CO2 levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ABG:

Arterial blood gas

PtcCO2 :

Transcutaneous carbon dioxide

VBG:

Venous blood gas

References

  1. Abboud PA, Roth PJ, Skiles CL, Stolfi A, Rowin ME (2012) Predictors of failure in infants with viral bronchiolitis treated with high-flow, high-humidity nasal cannula therapy*. Pediatr Criti Care Med 13:e343–e349. doi:10.1097/PCC.0b013e31825b546f

    Article  Google Scholar 

  2. Bar A, Srugo I, Amirav I, Tzverling C, Naftali G, Kugelman A (2008) Inhaled furosemide in hospitalized infants with viral bronchiolitis: a randomized, double-blind, placebo-controlled pilot study. Pediatr Pulmonol 43:261–267. doi:10.1002/ppul.20765

    Article  PubMed  Google Scholar 

  3. Bernet V, Doell C, Cannizzaro V, Ersch J, Frey B, Weiss M (2008) Longtime performance and reliability of two different PtcCO2 and SpO2 sensors in neonates. Pediatr Anesth 18:872–877

    Article  Google Scholar 

  4. Bland MJ, Altman D (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327:307–310

    Article  Google Scholar 

  5. Bressan S, Balzani M, Krauss B, Pettenazzo A, Zanconato S, Baraldi E (2013) High-flow nasal cannula oxygen for bronchiolitis in a pediatric ward: a pilot study. Eur J Pediatr 172:1649–1656. doi:10.1007/s00431-013-2094-4

    Article  CAS  PubMed  Google Scholar 

  6. Carter B, Wiwczarukt D, Hochmann M, Osborne A, Henning R (2001) Performance of transcutaneous PCO2 and pulse oximetry monitors in newborns and infants after cardiac surgery. Anaesth Intens Care 29:260–265

    CAS  Google Scholar 

  7. Dullenkopf A, Bernardo SD, Berger F, Fasnacht M, Gerber AC, Weiss M (2003) Evaluation of a new combined SpO2/PtcCO2 sensor in anaesthetized paediatric patients. Pediatr Anesth 13:777–784

    Article  Google Scholar 

  8. Gennis PR, Skovron ML, Aronson ST, Gallagher EJ (1985) The usefulness of peripheral venous blood in estimating acid-base status in acutely III patients. Ann Emerg Med 14:845–849

    Article  CAS  PubMed  Google Scholar 

  9. Hagerty JJ, Kleinman ME, Zurakowski D, Lyons AC, Krauss B (2002) Accuracy of a new low-flow sidestream capnography technology in newborns: a pilot study. J Perinatol 22:219–225. doi:10.1038/sj.jp.7210672

    Article  PubMed  Google Scholar 

  10. Harrison AM, Lynch JM, Dean JM, Witte MK (1997) Comparison of simultaneously obtained arterial and capillary blood gases in pediatric intensive care unit patients. Crit Care Med 25:1904–1908

    Article  CAS  PubMed  Google Scholar 

  11. Holmgren D, Sixt R (1992) Transcutaneous and arterial blood gas monitoring during acute asthmatic symptoms in older children. Pediat Pulmonol 14:80–84

    Article  CAS  Google Scholar 

  12. Kelly GS, Simon HK, Sturm JJ (2013) High-flow nasal cannula use in children with respiratory distress in the emergency department: predicting the need for subsequent intubation. Pediatr Emerg Care 29:888–892. doi:10.1097/PEC.0b013e31829e7f2f

    Article  PubMed  Google Scholar 

  13. Kneyber MC, Brandenburg AH, de Groot R, Joosten KF, Rothbarth PH, Ott A, Moll HA (1998) Risk factors for respiratory syncytial virus associated apnoea. Eur J Pediatr 157:331–335

    Article  CAS  PubMed  Google Scholar 

  14. Kugelman A, Zeiger-Aginsky D, Bader D, Shoris I, Riskin A (2008) A novel method of distal end-tidal CO2 capnography in intubated infants: comparison with arterial CO2 and with proximal mainstream end-tidal CO2. Pediatrics 122:e1219–e1224. doi:10.1542/peds.2008-1300

    Article  PubMed  Google Scholar 

  15. Lacerenza S, De Carolis MP, Fusco FP, La Torre G, Chiaradia G, Romagnoli C (2008) An evaluation of a new combined Spo2/PtcCO2 sensor in very low birth weight infants. Anesth Analg 107:125–129. doi:10.1213/ane.0b013e3181733e47

    Article  PubMed  Google Scholar 

  16. Lashkeri T, Howell JM, Place R (2012) Capnometry as a predictor of admission in bronchiolitis. Pediatr Emerg Care 28:895–897

    Article  PubMed  Google Scholar 

  17. Lazner MR, Basu AP, Klonin H (2012) Non-invasive ventilation for severe bronchiolitis: analysis and evidence. Pediatr Pulmonol 47:909–916. doi:10.1002/ppul.22513

    Article  PubMed  Google Scholar 

  18. Lowell DI, Lister G, Von Koss H, McCarthy P (1987) Wheezing in infants: the response to epinephrine. Pediatrics 79:939–945

    CAS  PubMed  Google Scholar 

  19. Marsden D, Chiu M, Paky F, Helms P (1985) Transcutaneous oxygen and carbon dioxide monitoring in intensive care. Arch Dis Child 60:1158–1161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Mayfield S, Bogossian F, O’Malley L, Schibler A (2014) High-flow nasal cannula oxygen therapy for infants with bronchiolitis: pilot study. J Paediatr Child Health 50:373–378. doi:10.1111/jpc.12509

    Article  PubMed  Google Scholar 

  21. Paiva R, Krivec U, Aubertin G, Cohen E, Clément A, Fauroux B (2009) Carbon dioxide monitoring during long-term noninvasive respiratory support in children. Intens Care Med 35:1068–1074

    Article  Google Scholar 

  22. Palmisano BW, Severinghaus JW (1990) Transcutaneous PCO2 and PO2: a multicenter study of accuracy. J Clin Monit 6:189–195

    Article  CAS  PubMed  Google Scholar 

  23. Rozycki HJ, Sysyn GD, Marshall MK, Malloy R, Wiswell TE (1998) Mainstream end-tidal carbon dioxide monitoring in the neonatal intensive care unit. Pediatrics 101:648–653

    Article  CAS  PubMed  Google Scholar 

  24. Storre JH, Steurer B, Kabitz H-J, Dreher M, Windisch W (2007) Transcutaneous PCO2 monitoring during initiation of noninvasive ventilation. CHEST 132:1810–1816

    Article  PubMed  Google Scholar 

  25. Urbano J, Cruzado V, Lopez-Herce J, del Castillo J, Bellon JM, Carrillo A (2010) Accuracy of three transcutaneous carbon dioxide monitors in critically ill children. Pediatr Pulmonol 45:481–486. doi:10.1002/ppul.21203

    PubMed  Google Scholar 

  26. Wennergren G, Engström I, Bjure J (1986) Transcutaneous oxygen and carbon dioxide levels and a clinical symptom scale for monitoring the acute asthmatic state in infants and young children. Acta Paediatr 75:465–469

    Article  CAS  Google Scholar 

  27. Wilson J, Russo P, Russo J, Tobias JD (2005) Noninvasive monitoring of carbon dioxide in infants and children with congenital heart disease: end-tidal versus transcutaneous techniques. J Intens Care Med 20:291–295

    Article  Google Scholar 

  28. Yıldızdaş D, Yapıcıoğlu H, Yılmaz H, Sertdemir Y (2004) Correlation of simultaneously obtained capillary, venous, and arterial blood gases of patients in a paediatric intensive care unit. Arch Dis Child 89:176–180

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Funding source

No external funding was secured for this study.

Financial disclosure

SenTec Inc. supported the study by supplying a SenTec monitor and supplies for the study.

Conflict of interest

We have no conflicts of interest to disclose, and we had no financial relationship with the organization that sponsored the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kugelman.

Additional information

Communicated by Peter de Winter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gal, S., Riskin, A., Chistyakov, I. et al. Transcutaneous PCO2 monitoring in infants hospitalized with viral bronchiolitis. Eur J Pediatr 174, 319–324 (2015). https://doi.org/10.1007/s00431-014-2407-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-014-2407-2

Keywords

Navigation