Skip to main content
Log in

Application of dendritic cells stimulated with Trichinella spiralis excretory–secretory antigens alleviates experimental autoimmune encephalomyelitis

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

The parasitic nematode, Trichinella spiralis (T. spiralis), exerts an immunomodulatory effect on the host immune response through excretory–secretory products (ES L1) released from encysted muscle larvae. Our model of combined T. spiralis infection and experimental autoimmune encephalomyelitis (EAE) in Dark Agouti (DA) rats demonstrated a significant reduction in EAE severity in infected animals. Recently, we have created an immune status characteristic for the live infection by in vivo application of dendritic cells (DCs) stimulated with ES L1 products of T. spiralis muscle larvae. Moreover, these cells were able to ameliorate EAE when applied 7 days before EAE induction. ES L1-stimulated DCs increased production of IL-4, IL-10 and TGF-β, and decreased production of IFN-γ and IL-17, both at the systemic level and in target organs. A significant increase in the proportion of CD4+CD25+Foxp3+ T cells was found among spleen cells, and CNS infiltrates from DA rats treated with ES L1-stimulated DCs before EAE induction, compared to controls injected with unstimulated DCs. Regulatory T cells, together with elevated levels of IL-10 and TGF-β, are most likely involved in restraining the production of Th1 and Th17 cytokines responsible for autoimmunity and thus are responsible for the beneficial effect of ES L1-educated DCs on the course of EAE. Our results show that ES L1 antigen-stimulated DCs are able not only to provoke, but also to sustain anti-inflammatory and regulatory responses regardless of EAE induction, with subsequent amelioration of EAE, or even protection from the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rook GAW (2010) 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: Darwinian medicine and the ‘hygiene’ or ‘old friends’ hypothesis. Clinic Exp Immunol. 160:70–79

    Article  CAS  Google Scholar 

  2. Rook GAW (2012) Hygiene hypothesis and autoimmune diseases. Clinic Rev Allerg Immunol. 42:5–15

    Article  CAS  Google Scholar 

  3. Youinou P, Pers JO, Gershwin ME, Shoenfeld Y (2010) Geo-epidemiology and autoimmunity. J Autoimmun 34:J163–J167

    Article  PubMed  CAS  Google Scholar 

  4. Kivity S, Agmon-Levin N, Blank M, Shoenfeld Y (2009) Infections and autoimmunity—friends or foes? Trends Immunol 30:409–414

    Article  PubMed  CAS  Google Scholar 

  5. Yazdanbakhsh M, Kremsner PG, van Ree R (2002) Allergy, parasites, and the hygiene hypothesis. Science 296:490–494

    Article  PubMed  CAS  Google Scholar 

  6. Fleming JO, Cook TD (2006) Multiple sclerosis and the hygiene hypothesis. Neurology 67:2085–2086

    Article  PubMed  Google Scholar 

  7. Correale J, Farez M (2007) Association between parasite infection and immune responses in multiple sclerosis. Ann Neurol. 61:97–108

    Article  PubMed  CAS  Google Scholar 

  8. Maizels RM, Yazdanbakhsh M (2008) T-cell regulation in helminth parasite infections: implications for inflammatory diseases. Chem Immunol Allergy 94:112–123

    Article  PubMed  CAS  Google Scholar 

  9. Correale J, Farez M (2011) The impact of parasite infections on the course of multiple sclerosis. J Neuroimmunol 233:6–11

    Google Scholar 

  10. Summers RW, Elliott DE, Urban JF Jr et al (2005) Trichuris suis therapy in Crohn’s disease. Gut 54:87–90

    Article  PubMed  CAS  Google Scholar 

  11. Gruden-Movsesijan A, Ilic N, Mostarica-Stojkovic M et al (2008) Trichinella spiralis: modulation of experimental autoimmune encephalomyelitis in DA rats. Exp Parasitol 188:641–647

    Article  Google Scholar 

  12. Gruden-Movsesijan A, Ilic N, Mostarica-Stojkovic M et al (2010) Mechanisms of modulation of experimental autoimmune encephalomyelitis by Trichinella spiralis infection in Dark Agouti rats. Parasite Immunol 32:450–459

    Article  PubMed  CAS  Google Scholar 

  13. Sakaguchi S, Takahashi T, Yamazaki S et al (2001) Immunologic self-tolerance maintained by T-cell-mediated control of self-reactive T cells: implications for autoimmunity and tumor immunity. Microbes Infect 3:911–918

    Article  PubMed  CAS  Google Scholar 

  14. El-Malky M, Nabih N, Heder M et al (2011) Helminth infections: therapeutic potential in autoimmune disorders. Parasite Immunol 33:589–593

    Article  PubMed  CAS  Google Scholar 

  15. Fleming J, Isaak A, Lee JE et al (2011) Probiotic helminth administration in relapsing—remitting multiple sclerosis: a phase 1 study. Mult Scler. 17:743–754

    Article  PubMed  CAS  Google Scholar 

  16. Summers RW, Elliot DE, Urban JF Jr et al (2005) Trichuris suis therapy for active ulcerative colitis: a randomized controlled trial. Gastroenterology 128:825–832

    Article  PubMed  Google Scholar 

  17. McKay DM (2009) The therapeutic helminth? Trends Parasitol. 25:109–114

    Article  PubMed  Google Scholar 

  18. Wu Z, Sofronic-Milosavljevic Lj, Nagano I, Takahashi Y (2008) Trichinella spiralis: nurse cell formation with emphasis on analogy to muscle cell repair. Parasite Vectors 19:27–40

    Article  Google Scholar 

  19. Despommier DD (1998) How does Trichinella spiralis make itself at home? Parasitol Today 14:318–323

    Article  PubMed  CAS  Google Scholar 

  20. Banchereau J, Briere F, Caux C et al (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811

    Article  PubMed  CAS  Google Scholar 

  21. Steinman RM, Hawiger D, Nussenzweig MC (2003) Tolerogenic dendritic cells. Annu Rev Immunol 21:685–711

    Article  PubMed  CAS  Google Scholar 

  22. Ilic N, Colic M, Gruden-Movsesijan A et al (2008) Characterization of rat bone marrow dendritic cells initially primed by Trichinella spiralis antigens. Parasite Immunol 30:491–495

    Article  PubMed  CAS  Google Scholar 

  23. Gruden-Movsesijan A, Ilic N, Colic M et al (2011) The impact of Trichinella spiralis excretory–secretory products on dendritic cells. Comp Immunol Microbio Infect Dis. 34:429–439

    Article  CAS  Google Scholar 

  24. Gamble HR, Bessonov AS, Cuperlovic K et al (2000) International commission on Trichinellosis: recommendations on methods for the control of Trichinella in domestic and wild animals intended for human consumption. Vet Parasitol 93:393–408

    Article  PubMed  CAS  Google Scholar 

  25. Ilic N, Worthington JJ, Gruden-Movsesijan A et al (2011) Trichinella spiralis antigens prime mixed Th1/Th2 response but do not induce de novo generation of Foxp3+ T cells in vitro. Parasite Immunol 33:572–582

    Article  PubMed  CAS  Google Scholar 

  26. Talmor M, Mirza A, Turly S et al (1998) Generation of large numbers of immature and mature dendritic cells from rat bone marrow cultures. Eur J Immunol 28:811–817

    Article  PubMed  CAS  Google Scholar 

  27. Momcilovic M, Miljkovic Z, Popadic D et al (2008) Kinetics of IFN-γ and IL-17 expression and production in active experimental autoimmune encephalomyelitis in Dark Agouti rats. Neurosci Lett 447:148–152

    Article  PubMed  CAS  Google Scholar 

  28. Hawiger D, Inaba K, Dorsett Y et al (2001) Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med 194:769–779

    Article  PubMed  CAS  Google Scholar 

  29. Lutz M, Schuler G (2002) Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol 23:445–449

    Article  PubMed  CAS  Google Scholar 

  30. Lutz MB, Kurts C (2009) Induction of peripheral CD4+ T-cell tolerance and CD8+ T-cell cross-tolerance by dendritic cells. Eur J Immunol 39:2325–2330

    Article  PubMed  CAS  Google Scholar 

  31. Perona-Wright G, Jenkins SJ, MacDonald AS (2006) Dendritic cell activation and function in response to Schistosoma mansoni. Int J Parsitol. 36:711–721

    Article  CAS  Google Scholar 

  32. Balic A, Harcus Y, Holland MJ, Maizels RM (2004) Selective maturation of dendritic cells by Nippostrongylus brasiliensis-secreted proteins drives Th2 immune responses. Eur J Immunol 34:3047–3059

    Article  PubMed  CAS  Google Scholar 

  33. Dowling DJ, Noone CM, Adams PN et al (2011) Ascaris lumbricoides pseudocoelomic body fluid induces a partially activated dendritic cell phenotype with Th2 promoting ability in vivo. Int J Parasitol 41:255–261

    Article  PubMed  CAS  Google Scholar 

  34. Manickasingham SP, Edwards AD, Schulc O, Reis e Sousa C (2003) The ability of murine dendritic cell subsets to direct T helper cell differentiation is dependent on microbial signals. Eur J Immunol 33:101–107

    Article  PubMed  CAS  Google Scholar 

  35. Maldonado-Lopez R, Maliszewski C, Urbain J, Moser M (2001) Cytokines regulate the capacity of CD8+ and CD8− dendritic cells to prime Th1/Th2 cells in vivo. J Immunol. 167:4345–4350

    PubMed  CAS  Google Scholar 

  36. Corinti S, Albanes C, la Sala A et al (2001) Regulatory activity of autocrine IL-10 on dendritic cell functions. J Immunol. 166:4312–4318

    PubMed  CAS  Google Scholar 

  37. Hilkens CMU, Isaacs JD, Thomson AW (2010) Development of dendritic cell-based immunotherapy for autoimmunity. Int Rev Immunol 29:156–183

    Article  PubMed  CAS  Google Scholar 

  38. Lan YY, Wang Z, Raimondi G et al (2006) “Alternatively activated” dendritic cells preferentially secrete IL-10, expand Foxp3+CD4+ T cells, and induce long-term organ allograft survival in combination with CTLA4-Ig. J Immunol. 177:5868–5877

    PubMed  CAS  Google Scholar 

  39. Stromnes IM, Cerretti LM, Liggit D et al (2008) Differential regulation of central nervous system autoimmunity by Th1 and Th17 cells. Nat Med 14:337–342

    Article  PubMed  CAS  Google Scholar 

  40. Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133:775–787

    Article  PubMed  CAS  Google Scholar 

  41. Zhang X, Koldzic DN, Izikson L et al (2004) IL-10 is involved in the suppression of experimental autoimmune encephalomyelitis by CD25+CD4+ regulatory T cells. Int Immunol 16:249–256

    Article  PubMed  CAS  Google Scholar 

  42. Marie JC, Letterio JJ, Gavin M, Rudensky AY (2005) TGF-beta1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J Exp Med 201:1061–1067

    Article  PubMed  CAS  Google Scholar 

  43. Huang YM, Yang J, Xu LY et al (2000) Autoantigen-pulsed dendritic cells induce tolerance to experimental allergic encephalomyelitis (EAE) in Lewis rats. Clin Exp Immunol 122:437–444

    Article  PubMed  CAS  Google Scholar 

  44. Menges M, Rößner S, Voigtländer C et al (2002) Repetitive injections of dendritic cells matured with tumor necrosis factor-α induce antigen-specific protection of mice from autoimmunity. J Exp Med 195:15–21

    Article  PubMed  CAS  Google Scholar 

  45. Hu J, Wan Y (2011) Tolerogenic dendritic cells and their potential applications. Immunology 132:307–314

    Article  PubMed  CAS  Google Scholar 

  46. Maloy KJ, Powrie F (2001) Regulatory T cells in the control of immune pathology. Nat Immunol 2:816–822

    Article  PubMed  CAS  Google Scholar 

  47. Thornton AM, Shevach EM (2000) Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J Immunol. 164:183–190

    PubMed  CAS  Google Scholar 

  48. Van de Keere F, Tonegawa S (1998) CD4+ T cells prevent spontaneous Experimental autoimmune encephalomyelitis in anti-myelin basic protein T cell receptor transgenic mice. J Exp Med 188:1875–1882

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Dr. Miodrag Colic and Dr. Sergej Tomic (Military Medical Academy School of Medicine, Belgrade) for valuable assistance and helpful discussions. We also wish to express sincere thanks to Dr. Marija Mostarica-Stojkovic (Institute of Microbiology and Immunology, School of Medicine, University of Belgrade) for critical reading of the paper and providing valuable advices. This work was supported by the Ministry of Education and Science, Republic of Serbia (Project 173047).

Conflict of interest

The authors confirm that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gruden-Movsesijan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sofronic-Milosavljevic, L., Radovic, I., Ilic, N. et al. Application of dendritic cells stimulated with Trichinella spiralis excretory–secretory antigens alleviates experimental autoimmune encephalomyelitis. Med Microbiol Immunol 202, 239–249 (2013). https://doi.org/10.1007/s00430-012-0286-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-012-0286-6

Keywords

Navigation