Skip to main content

Advertisement

Log in

Orofacial proprioceptive thalamus of the rat

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The ascending pathway mediating proprioception from the orofacial region is still not fully known. The present study elucidated the relay of jaw-closing muscle spindle (JCMS) inputs from brainstem to thalamus in rats. We injected an anterograde tracer into the electrophysiologically identified supratrigeminal nucleus (Su5), known to receive JCMS input. Many thalamic axon terminals were labeled and were found mainly contralaterally in a small, unpredicted area of the caudo-ventromedial edge (VPMcvm) of ventral posteromedial thalamic nucleus (VPM). Electrical stimulation of the masseter nerve and passive jaw movements induced large responses in the VPMcvm. The VPMcvm is far from the rostrodorsal part of ventral posterolateral thalamic nucleus (VPL) where proprioceptive inputs from the body are represented. After injection of a retrograde tracer into the electrophysiologically identified VPMcvm, many neurons were labeled almost exclusively in the contralateral Su5, whereas no labeled neurons were found in the principal sensory trigeminal nucleus (Pr5) and spinal trigeminal nucleus (Sp5). In contrast, after injection of a retrograde tracer into the core of VPM, many neurons were labeled contralaterally in the Pr5 and Sp5, but none in the Su5. We conclude that JCMS input excites trigeminothalamic projection neurons in the Su5 which project primarily to the VPMcvm in marked contrast to other proprioceptors and sensory receptors in the orofacial region which project to the core VPM. These findings suggest that lesions or deep brain stimulation in the human equivalent of VPMcvm may be useful for treatment of movement disorders (e.g., orofacial tremor) without affecting other sensations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

3V:

Third ventricle

7n:

Facial nerve

10:

Dorsal motor nucleus of vagus

12:

Hypoglossal nucleus

ABC:

Avidin-biotin-peroxidase complex

APT:

Anterior pretectal nucleus

AVM:

Area ventral to the Mo5 and medial to the Pr5

BDA:

Biotinylated dextranamine

CL:

Centrolateral thalamic nucleus

CM:

Central medial thalamic nucleus

contra:

Contralateral

Cu:

Cuneate nucleus

DAB:

Diaminobenzidine

DBS:

Deep brain stimulation

FG:

Fluorogold

fr:

Fasciculus retroflexus

Gr:

Gracile nucleus

HRP:

Horseradish peroxidase

I5:

Intertrigeminal region

IMD:

Intermediodorsal thalamic nucleus

ipsi:

Ipsilateral

JCMS:

Jaw-closing muscle spindle

KF:

Kölliker–Fuse nucleus

LHb:

Lateral habenular nucleus

LPB:

Lateral parabrachial nucleus

m5:

Trigeminal motor nerve

Me5:

Mesencephalic trigeminal nucleus

me5:

Mesencephalic trigeminal tract

MD:

Mediodorsal thalamic nucleus

MHb:

Medial habenular nucleus

ml:

Medial lemniscus

Mo5:

Trigeminal motor nucleus

MPB:

Medial parabrachial nucleus

PB:

Parabrachial nucleus

PC:

Paracentral thalamic nucleus

PF:

Parafascicular thalamic nucleus

PhB:

Phosphate buffer

PhBS:

Phosphate buffered saline

Po:

Posterior thalamic nucleus

Pr5:

Principal sensory trigeminal nucleus

PV:

Paraventricular thalamic nucleus

scp:

Superior cerebellar peduncle

SO:

Superior olive

Sol:

Nucleus of the solitary tract

Sp5:

Spinal trigeminal nucleus

sp5:

Spinal trigeminal tract

Sp5C:

Sp5, caudal part

Sp5I:

Sp5, interpolar part

Sp5O:

Sp5, oral part

Su5:

Supratrigeminal nucleus

TMB:

Tetramethyl benzidine

Vim:

Ventral intermediate thalamic nucleus

VM:

Ventromedial thalamic nucleus

VPL:

Ventral posterolateral thalamic nucleus

VPLo:

Oral part of the VPL

VPM:

Ventral posteromedial thalamic nucleus

VPMcvm:

Caudo-ventromedial edge of the VPM

VPPC:

Parvicellular part of ventral posterior thalamic nucleus

WGA-HRP:

Wheat-germ agglutinin conjugated horseradish peroxidase

References

  • Akhter F, Haque T, Sato F, Kato T, Ohara H, Fujio T, Tsutsumi K, Uchino K, Sessle BJ, Yoshida A (2014) Projections from the dorsal peduncular cortex to the trigeminal subnucleus caudalis (medullary dorsal horn) and other lower brainstem areas in rats. Neuroscience 266:23–37

    Article  CAS  PubMed  Google Scholar 

  • Andersson SA, Landgren S, Wolsk D (1966) The thalamic relay and cortical projection of group I muscle afferents from the forelimb of the cat. J Physiol (Lond) 183:576–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolton PS, Tracey DJ (1992) Neurons in the dorsal column nuclei of the rat respond to stimulation of neck mechanoreceptors and project to the thalamus. Brain Res 595:175–179

    Article  CAS  PubMed  Google Scholar 

  • Bruce LL, McHaffie JG, Stein BE (1987) The organization of trigeminotectal and trigeminothalamic neurons in rodents: a double-labeling study with fluorescent dyes. J Comp Neurol 262:315–330

    Article  CAS  PubMed  Google Scholar 

  • Capra NF (1987) Localization and central projections of primary afferent neurons that innervate the temporomandibular joint in cats. Somatosens Res 4:201–213

    Article  CAS  PubMed  Google Scholar 

  • Cechetto DF, Saper CB (1987) Evidence for a viscerotopic sensory representation in the cortex and thalamus in the rat. J Comp Neurol 262:27–45

    Article  CAS  PubMed  Google Scholar 

  • Chiaia NL, Rhoades RW, Bennett-Clarke CA, Fish SE, Killackey HP (1991a) Thalamic processing of vibrissal information in the rat. I. Afferent input to the medial ventral posterior and posterior nuclei. J Comp Neurol 314:201–216

  • Chiaia NL, Rhoades RW, Fish SE, Killackey HP (1991b) Thalamic processing of vibrissal information in the rat: II. Morphological and functional properties of medial ventral posterior nucleus and posterior nucleus neurons. J Comp Neurol 314:217–236

  • Clark GT, Koyano K, Browne PA (1993) Oral motor disorders in humans. J Calif Dent Assoc 21:19–30

    CAS  PubMed  Google Scholar 

  • Cody FW, Lee RW, Taylor A (1972) A functional analysis of the components of the mesencephalic nucleus of the fifth nerve in the cat. J Physiol (Lond) 226:249–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dado RJ, Giesler GJ Jr (1990) Afferent input to nucleus submedius in rats: retrograde labeling of neurons in the spinal cord and caudal medulla. J Neurosci 10:2672–2686

    CAS  PubMed  Google Scholar 

  • Dessem D, Moritani M, Ambalavanar R (2007) Nociceptive craniofacial muscle primary afferent neurons synapse in both the rostral and caudal brain stem. J Neurophysiol 98:214–223

    Article  PubMed  Google Scholar 

  • Diamond ME, Armstrong-James M, Budway MJ, Ebner FF (1992a) Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus: dependence on the barrel field cortex. J Comp Neurol 319:66–84

  • Diamond ME, Armstrong-James M, Ebner FF (1992b) Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus. J Comp Neurol 318:462–476

  • Dubner R, Sessle BJ, Storey AT (1978) The neural basis of oral and facial function. Plenum Press, New York

    Book  Google Scholar 

  • Erer S, Jankovic J (2007) Hereditary chin tremor in Parkinson’s disease. Clin Neurol Neurosurg 109:784–785

    Article  PubMed  Google Scholar 

  • Fabri M, Burton H (1991) Topography of connections between primary somatosensory cortex and posterior complex in rat: a multiple fluorescent tracer study. Brain Res 538:351–357

    Article  CAS  PubMed  Google Scholar 

  • Francis JT, Xu S, Chapin JK (2008) Proprioceptive and cutaneous representations in the rat ventral posterolateral thalamus. J Neurophysiol 99:2291–2304

    Article  PubMed  Google Scholar 

  • Friedman DP, Jones EG (1981) Thalamic input to areas 3a and 2 in monkeys. J Neurophysiol 45:59–85

    CAS  PubMed  Google Scholar 

  • Fujio T, Sato F, Tachibana Y, Kato T, Tomita A, Higashiyama K, Ono T, Maeda Y, Yoshida A (2016) Revisiting the supratrigeminal nucleus in the rat. Neuroscience 324:307–320

    Article  CAS  PubMed  Google Scholar 

  • Fukushima T, Kerr FW (1979) Organization of trigeminothalamic tracts and other thalamic afferent systems of the brainstem in the rat: presence of gelatinosa neurons with thalamic connections. J Comp Neurol 183:169–184

    Article  CAS  PubMed  Google Scholar 

  • Groenewegen HJ, Witter MP (2004) Thalamus. In: Paxinos G (ed) The rat nervous system. Elsevier Academic Press, Amsterdam, pp 407–453

    Chapter  Google Scholar 

  • Hamani C, Dostrovsky JO, Lozano AM (2006) The motor thalamus in neurosurgery. Neurosurgery 58:146–158

    Article  PubMed  Google Scholar 

  • Jones EG, Friedman DP (1982) Projection pattern of functional components of thalamic ventrobasal complex on monkey somatosensory cortex. J Neurophysiol 48:521–544

    CAS  PubMed  Google Scholar 

  • Jones EG, Friedman DP, Hendry SH (1982) Thalamic basis of place- and modality-specific columns in monkey somatosensory cortex: a correlative anatomical and physiological study. J Neurophysiol 48:545–568

    CAS  PubMed  Google Scholar 

  • Karp BI, Alter K (2016) Botulinum toxin treatment of blepharospasm, orofacial/oromandibular dystonia, and hemifacial spasm. Semin Neurol 36:84–91

    Article  PubMed  Google Scholar 

  • Kemplay S, Webster KE (1989) A quantitative study of the projections of the gracile, cuneate and trigeminal nuclei and of the medullary reticular formation to the thalamus in the rat. Neuroscience 32:153–167

    Article  CAS  PubMed  Google Scholar 

  • Krout KE, Loewy AD (2000) Parabrachial nucleus projections to midline and intralaminar thalamic nuclei of the rat. J Comp Neurol 428:475–494

    Article  CAS  PubMed  Google Scholar 

  • Lenz FA, Kwan HC, Dostrovsky JO, Tasker RR, Murphy JT, Lenz YE (1990) Single unit analysis of the human ventral thalamic nuclear group. Activity correlated with movement. Brain 113:1795–1821

    Article  PubMed  Google Scholar 

  • Lenz FA, Kwan HC, Martin R, Tasker R, Richardson RT, Dostrovsky JO (1994) Characteristics of somatotopic organization and spontaneous neuronal activity in the region of the thalamic principal sensory nucleus in patients with spinal cord transection. J Neurophysiol 72:1570–1587

    CAS  PubMed  Google Scholar 

  • Leong SK, Tan CK (1987) Central projection of rat sciatic nerve fibres as revealed by Ricinus communis agglutinin and horseradish peroxidase tracers. J Anat 154:15–26

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lorente de Nó R (1922) Contribución a1 conocimiento del nervio trigémino. Libro en honor de Dn. S. Ramón y Cajal. Móya, Madrid, 2:13

    Google Scholar 

  • Lorente de Nó R (1933) Vestibulo-ocular reflex arc. Arch Neurol Psychiatr 30:245–291

    Article  Google Scholar 

  • Low JS, Mantle-St John LA, Tracey DJ (1986) Nucleus z in the rat: spinal afferents from collaterals of dorsal spinocerebellar tract neurons. J Comp Neurol 243:510–526

    Article  CAS  PubMed  Google Scholar 

  • Lund JP, Richmond FJ, Touloumis C, Patry Y, Lamarre Y (1978) The distribution of Golgi tendon organs and muscle spindles in masseter and temporalis muscles of the cat. Neuroscience 3:259–270

    Article  CAS  PubMed  Google Scholar 

  • Luo P, Dessem D (1995) Inputs from identified jaw-muscle spindle afferents to trigeminothalamic neurons in the rat: a double-labeling study using retrograde HRP and intracellular biotinamide. J Comp Neurol 353:50–66

    Article  CAS  PubMed  Google Scholar 

  • Luo P, Wong R, Dessem D (1995) Ultrastructural basis for synaptic transmission between jaw-muscle spindle afferents and trigeminothalamic neurons in the rostral trigeminal sensory nuclei of the rat. J Comp Neurol 363:109–128

    Article  PubMed  Google Scholar 

  • Luo P, Moritani M, Dessem D (2001) Jaw-muscle spindle afferent pathways to the trigeminal motor nucleus in the rat. J Comp Neurol 435:341–353

    Article  CAS  PubMed  Google Scholar 

  • Maendly R, Rüegg DG, Wiesendanger M, Wiesendanger R, Lagowska J, Hess B (1981) Thalamic relay for group I muscle afferents of forelimb nerves in the monkey. J Neurophysiol 46:901–917

    CAS  PubMed  Google Scholar 

  • Marfurt CF (1981) The central projections of trigeminal primary afferent neurons in the cat as determined by the tranganglionic transport of horseradish peroxidase. J Comp Neurol 203:785–798

    Article  CAS  PubMed  Google Scholar 

  • Mesulam MM (1978) Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem 126:106–117

    Article  Google Scholar 

  • Narabayashi H, Ohye C (1980) Importance of microstereoencephalotomy for tremor alleviation. Appl Neurophysiol 43:222–227

    CAS  PubMed  Google Scholar 

  • Norgren R, Leonard CM (1973) Ascending central gustatory pathways. J Comp Neurol 150:217–237

    Article  CAS  PubMed  Google Scholar 

  • Ohya A (1992) Responses of trigeminal subnucleus interpolaris neurons to afferent inputs from deep oral structures. Brain Res Bull 29:773–781

    Article  CAS  PubMed  Google Scholar 

  • Ohya A, Tsuruoka M, Imai E, Fukunaga H, Shinya A, Furuya R, Kawawa T, Matsui Y (1993) Thalamic- and cerebellar-projecting interpolaris neuron responses to afferent inputs. Brain Res Bull 32:615–621

    Article  CAS  PubMed  Google Scholar 

  • Ohye C (2000) Use of selective thalamotomy for various kinds of movement disorder, based on basic studies. Stereotact Funct Neurosurg 75:54–65

    Article  CAS  PubMed  Google Scholar 

  • Ohye C, Shibazaki T, Hirai T, Wada H, Hirato M, Kawashima Y (1989) Further physiological observations on the ventralis intermedius neurons in the human thalamus. J Neurophysiol 61:488–500

    CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic Press, Sydney

    Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, Sydney

    Google Scholar 

  • Paxinos G, Watson C (2014) The rat brain in stereotaxic coordinates, 7th edn. Academic Press, Sydney

    Google Scholar 

  • Pierret T, Lavallée P, Deschênes M (2000) Parallel streams for the relay of vibrissal information through thalamic barreloids. J Neurosci 20:7455–7462

    CAS  PubMed  Google Scholar 

  • Romfh JH, Capra NF, Gatipon GB (1979) Trigeminal nerve and temporomandibular joint of the cat: a horseradish peroxidase study. Exp Neurol 65:99–106

    Article  CAS  PubMed  Google Scholar 

  • Sato F, Akhter F, Haque T, Kato T, Takeda R, Nagase Y, Sessle BJ, Yoshida A (2013) Projections from the insular cortex to painreceptive trigeminal caudal subnucleus (medullary dorsal horn) and other lower brainstem areas in rats. Neuroscience 233:9–27

    Article  CAS  PubMed  Google Scholar 

  • Shigenaga Y, Nakatani Z, Nishimori T, Suemune S, Kuroda R, Matano S (1983) The cells of origin of cat trigeminothalamic projections: especially in the caudal medulla. Brain Res 277:201–222

    Article  CAS  PubMed  Google Scholar 

  • Takemura M, Sugimoto T, Shigenaga Y (1991) Difference in central projection of primary afferents innervating facial and intraoral structures in the rat. Exp Neurol 111:324–331

    Article  CAS  PubMed  Google Scholar 

  • Taylor A (1990) Neurophysiology of the jaws and teeth. Macmillan Press, London

    Book  Google Scholar 

  • Veinante P, Deschênes M (1999) Single- and multi-whisker channels in the ascending projections from the principal trigeminal nucleus in the rat. J Neurosci 19:5085–5095

    CAS  PubMed  Google Scholar 

  • Wolraich D, Vasile Marchis-Crisan C, Redding N, Khella SL, Mirza N (2010) Laryngeal tremor: co-occurrence with other movement disorders. ORL J Otorhinolaryngol Relat Spec 72:291–294

    Article  CAS  PubMed  Google Scholar 

  • Yasui Y, Saper CB, Cechetto DF (1989) Calcitonin gene-related peptide immunoreactivity in the visceral sensory cortex, thalamus, and related pathways in the rat. J Comp Neurol 290:487–501

    Article  CAS  PubMed  Google Scholar 

  • Yoshida A, Dostrovsky JO, Sessle BJ, Chiang CY (1991) Trigeminal projections to the nucleus submedius of the thalamus in the rat. J Comp Neurol 307:609–625

    Article  CAS  PubMed  Google Scholar 

  • Yoshida A, Dostrovsky JO, Chiang CY (1992) The afferent and efferent connections of the nucleus submedius in the rat. J Comp Neurol 324:115–133

    Article  CAS  PubMed  Google Scholar 

  • Yoshida A, Taki I, Chang Z, Iida C, Haque T, Tomita A, Seki S, Yamamoto S, Masuda Y, Moritani M, Shigenaga Y (2009) Corticofugal projections to trigeminal motoneurons innervating antagonistic jaw muscles in rats as demonstrated by anterograde and retrograde tract tracing. J Comp Neurol 514:368–386

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to Dr. Akiko Tomita, Dr. Yume Uemura, Ms. Etsuko Ikenoue and Ms. Yumi Tsutsumi for their technical help. This work was supported by Ministry of Education, Culture, Sports, Science and Technology of Japan (Grant 26293391 and 16K15775 to A.Y. and Grant 15H06387 to O.H.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Yoshida.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest with respect to the authorship and/or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshida, A., Fujio, T., Sato, F. et al. Orofacial proprioceptive thalamus of the rat. Brain Struct Funct 222, 2655–2669 (2017). https://doi.org/10.1007/s00429-016-1363-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-016-1363-1

Keywords

Navigation