Skip to main content

Advertisement

Log in

Efferent and afferent connections of supratrigeminal neurons conveying orofacial muscle proprioception in rats

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The supratrigeminal nucleus (Su5) is a key structure for controlling jaw movements; it receives proprioceptive sensation from jaw-closing muscle spindles (JCMSs) and sends projections to the trigeminal motor nucleus (Mo5). However, the central projections and regulation of JCMS proprioceptive sensation are not yet fully understood. Therefore, we aimed to reveal the efferent and afferent connections of the Su5 using neuronal tract tracings. Anterograde tracer injections into the Su5 revealed that the Su5 sends contralateral projections (or bilateral projections with a contralateral predominance) to the Su5, basilar pontine nuclei, pontine reticular nucleus, deep mesencephalic nucleus, superior colliculus, caudo-ventromedial edge of the ventral posteromedial thalamic nucleus, parafascicular thalamic nucleus, zona incerta, and lateral hypothalamus, and ipsilateral projections (or bilateral projections with an ipsilateral predominance) to the intertrigeminal region, trigeminal oral subnucleus, dorsal medullary reticular formation, and hypoglossal nucleus as well as the Mo5. Retrograde tracer injections into the Su5 demonstrated that the Su5 receives bilateral projections with a contralateral predominance (or contralateral projections) from the primary and secondary somatosensory cortices, granular insular cortex, and Su5, and ipsilateral projections (or bilateral projections with an ipsilateral predominance) from the dorsal peduncular cortex, bed nuclei of stria terminalis, central amygdaloid nucleus, lateral hypothalamus, parasubthalamic nucleus, trigeminal mesencephalic nucleus, parabrachial nucleus, juxtatrigeminal region, trigeminal oral and caudal subnuclei, and dorsal medullary reticular formation. These findings suggest that the Su5, which receives JCMS proprioception, has efferent and afferent connections with multiple brain regions that are involved in emotional and autonomic functions as well as orofacial motor functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

All data and materials are available upon request.

Code availability

Not applicable.

Abbreviations

3:

Oculomotor nucleus

5C:

Caudal subnucleus of the trigeminal spinal nucleus

5I:

Interpolar subnucleus of the trigeminal spinal nucleus

5O:

Oral subnucleus of the trigeminal spinal nucleus

5Or:

Rostro-dorsomedial part of the 5O

7n:

Facial nerve

10:

Dorsal motor nucleus of the vagus

ac:

Anterior commissure

Acb:

Accumbens nucleus

ACg:

Anterior cingulate cortex

AD:

Anterodorsal thalamic nucleus

Agl:

Lateral agranular cortex

Agm:

Medial agranular cortex

AI:

Agranular insular cortex

Amb:

Ambiguus nucleus

AmBl:

Basolateral amygdaloid nucleus

AmC:

Central amygdaloid nucleus

AmL:

Lateral amygdaloid nucleus

AP:

Area postrema

Aq:

Aqueduct

Au:

Auditory cortex

AV:

Anteroventral thalamic nucleus

BDA:

Biotinylated dextranamine

BPn:

Basilar pontine nuclei

BST:

Bed nucleus of stria terminalis

BSTl:

Lateral division of the BST

BSTm:

Medial division of the BST

CC:

Central canal

cc:

Corpus callosum

CL:

Centrolateral thalamic nucleus

Cl:

Claustrum

CM:

Central medial thalamic nucleus

CPu:

Caudate putamen

CTb:

Cholera toxin B subunit

Cu:

Cuneate nucleus

cu:

Cuneate fasciculus

dGIrvs2:

Dorsal part of the GI rostroventrally adjacent to the rostralmost part of the S2

DI:

Dysgranular insular cortex

dmRf:

Dorsal medullary reticular formation

DP:

Dorsal peduncular cortex

DpMe:

Deep mesencephalic nucleus

DR:

Dorsal raphe nucleus

DTg:

Dorsal tegmental nucleus

Ect:

Ectorhinal cortex

ECu:

External cuneate nucleus

f:

Fornix

fr:

Fasciculus retroflexus

GI:

Granular insular cortex

Gr:

Gracile nucleus

I5:

Intertrigeminal region

IC:

Inferior colliculus

ic:

Internal capsule

IL:

Infralimbic cortex

IO:

Inferior olive

IPAC:

Interstitial nucleus of the posterior limb of the anterior commissure

J5:

Juxtatrigeminal region

JCm:

Jaw-closing motor nucleus

JCMS:

Jaw-closing muscle spindle

JOm:

Jaw-opening motor nucleus

KF:

Kölliker-Fuse nucleus

LEnt:

Lateral entorhinal cortex

lf:

Longitudinal fasciculus

LGP:

Lateral globus pallidus

LH:

Lateral hypothalamus

LO:

Lateral orbital cortex

MD:

Mediodorsal thalamic nucleus

Me5:

Trigeminal mesencephalic nucleus

MGP:

Medial globus pallidus

ml:

Medial lemniscus

MO:

Medial orbital cortex

Mo5:

Trigeminal motor nucleus

OPC:

Oval paracentral thalamic nucleus

ox:

Optic chiasm

PA:

Parietal association cortex

Pa5:

Paratrigeminal nucleus

PAG:

Periaqueductal gray

PB:

Phosphate buffer

Pb:

Parabrachial nucleus

PBS:

Phosphate-buffered saline

PC:

Paracentral thalamic nucleus

Pf:

Parafascicular thalamic nucleus

PnR:

Pontine reticular nucleus

Po:

Posterior thalamic nucleus

Pr:

Prepositus nucleus

Pr5:

Trigeminal principal nucleus

PRh:

Perirhinal cortex

PrL:

Prelimbic cortex

Psth:

Parasubthalamic nucleus

PvH:

Paraventricular hypothalamic nucleus

py:

Pyramidal tract

pyx:

Pyramidal decussation

R:

Red nucleus

Rfvm:

Reticular formation ventral to the Mo5

RRF:

Retrorubral field

Rt:

Reticular thalamic nucleus

RtTg:

Reticulotegmental nucleus

S1:

Primary somatosensory cortex

S2:

Secondary somatosensory cortex

SC:

Superior colliculus

scp:

Superior cerebellar peduncle

Sm:

Submedial thalamic nucleus

SNc:

Substantia nigra pars compacta

SNr:

Substantia nigra pars reticulata

Sol:

Solitary tract nucleus

sp5:

Spinal trigeminal tract

st:

Stria terminalis

Sth:

Subthalamic nucleus

Su5:

Supratrigeminal nucleus

TA:

Temporal association cortex

tth:

Trigeminothalamic tract

VA:

Ventral anterior thalamic nucleus

Ve:

Vestibular nucleus

VII:

Facial nucleus

VL:

Ventrolateral thalamic nucleus

VM:

Ventromedial thalamic nucleus

VO:

Ventral orbital cortex

VPL:

Ventral posterolateral thalamic nucleus

VPM:

Ventral posteromedial thalamic nucleus

VPMcvm:

Caudo-ventromedial edge of the VPM

VPPC:

Parvicellular part of the ventral posterior thalamic nucleus

XII:

Hypoglossal nucleus

ZI:

Zona incerta

References

  • Akhter F, Haque T, Sato F, Kato T, Ohara H, Fujio T, Tsutsumi K, Uchino K, Sessle BJ, Yoshida A (2014) Projections from the dorsal peduncular cortex to the trigeminal subnucleus caudalis (medullary dorsal horn) and other lower brainstem areas in rats. Neuroscience 266:23–37

    CAS  PubMed  Google Scholar 

  • Alden M, Besson JM, Bernard JF (1994) Organization of the efferent projections from the pontine parabrachial area to the bed nucleus of the stria terminalis and neighboring regions: a PHA-L study in the rat. J Comp Neurol 341:289–314

    CAS  PubMed  Google Scholar 

  • Altschuler SM, Bao XM, Bieger D, Hopkins DA, Miselis RR (1989) Viscerotopic representation of the upper alimentary tract in the rat: sensory ganglia and nuclei of the solitary and spinal trigeminal tracts. J Comp Neurol 283:248–268

    CAS  PubMed  Google Scholar 

  • Arts MPM, Bemelmans FFJ, Cools AR (1998) Role of the retrorubral nucleus in striatally elicited orofacial dyskinesia in cats: effects of muscimol and bicuculline. Psychopharmacol 140:150–156

    CAS  Google Scholar 

  • Åström KE (1953) On the central course of afferent fibres in the trigeminal, facial, glossopharyngeal, and vagal nerves and their nuclei in the mouse. Acta Physiol Scand 39(Suppl 106):209–320

    Google Scholar 

  • Augustine JR (1985) The insular lobe in primates including humans. Neurol Res 7:2–10

    CAS  PubMed  Google Scholar 

  • Augustine JR (1996) Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Brain Res Rev 22:229–244

    CAS  PubMed  Google Scholar 

  • Avivi-Arber L, Lee JC, Sessle BJ (2010) Effects of incisor extraction on jaw and tongue motor representations within face sensorimotor cortex of adult rats. J Comp Neurol 518:1030–1045

    PubMed  Google Scholar 

  • Berendse HW, Groenewegen HJ (1991) Restricted cortical termination fields of the midline and intralaminar thalamic nuclei in the rat. Neuroscience 42:73–102

    CAS  PubMed  Google Scholar 

  • Bickford ME, Hall WC (1992) The nigral projection to predorsal bundle cells in the superior colliculus of the rat. J Comp Neurol 319:11–33

    CAS  PubMed  Google Scholar 

  • Bienkowski MS, Rinaman L (2013) Common and distinct neural inputs to the medial central nucleus of the amygdala and anterior ventrolateral bed nucleus of stria terminalis in rats. Brain Struct Funct 218:187–208

    PubMed  Google Scholar 

  • Brodal P (1982) The cerebropontocerebellar pathway: Salient features of its organization. Exp Brain Res [suppl] 6:108–133

    Google Scholar 

  • Campbell SK, Parker TD, Welker W (1974) Somatotopic organization of the external cuneate nucleus in albino rats. Brain Res 77:1–23

    CAS  PubMed  Google Scholar 

  • Chang Z, Haque T, Iida C, Seki S, Sato F, Kato T, Uchino K, Ono T, Nakamura M, Bae YC, Yoshida A (2009) Distribution of premotoneurons for jaw-closing and jaw-opening motor nucleus receiving contacts from axon terminals of primary somatosensory cortical neurons in rats. Brain Res 1275:43–53

    CAS  PubMed  Google Scholar 

  • Coote JH (2005) A role for the paraventricular nucleus of the hypothalamus in the autonomic control of heart and kidney. Exp Physiol 90:169–173

    CAS  PubMed  Google Scholar 

  • Cunningham ET Jr, Sawchenko PE (2000) Dorsal medullary pathways subserving oromotor reflexes in the rat: implications for the central neural control of swallowing. J Comp Neurol 417:448–466

    PubMed  Google Scholar 

  • de No ́RL (1922) Contribucio ́na1conocimientodelnervio trige ́mino. Libro en honor de Dn. S. Ramo ́n y Cajal. Madrid, Mo ́ya 2:13

  • de No ́RL (1933) Vestibulo-ocular reflex arc. Arch Neurol Psychiat 30:245–291

  • Dong HW, Swanson LW (2003) Projections from the rhomboid nucleus of the bed nuclei of the stria terminalis: implications for cerebral hemisphere regulation of ingestive behaviors. J Comp Neurol 463:434–472

    PubMed  Google Scholar 

  • Donga R, Lund JP, Veilleux D (1990) An electrophysiological study of trigeminal commissural interneurons in the anaesthetized rabbit. Brain Res 515:351–354

    CAS  PubMed  Google Scholar 

  • Donoghue JP, Parham C (1983) Afferent connections of the lateral agranular field of the rat motor cortex. J Comp Neurol 217:390–404

    CAS  PubMed  Google Scholar 

  • Donoghue JP, Wise SP (1982) The motor cortex of the rat: cytoarchitecture and microstimulation mapping. J Comp Neurol 212:76–88

    CAS  PubMed  Google Scholar 

  • Dubner R, Sessle BJ, Storey AT (1978) The Neural Basis of Oral and Facial Function. Plenum Press, New York

    Google Scholar 

  • Fujio T, Sato F, Tachibana Y, Kato T, Tomita A, Higashiyama K, Ono T, Maeda Y, Yoshida A (2016) Revisiting the supratrigeminal nucleus in the rat. Neuroscience 324:307–320

    CAS  PubMed  Google Scholar 

  • Gauriau C, Bernard JF (2004) Posterior triangular thalamic neurons convey nociceptive messages to the secondary somatosensory and insular cortices in the rat. J Neurosci 24:752–761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg LJ, Nakamura Y (1968) Lingually induced inhibition of masseteric motoneurones. Experientia 24:371–373

    CAS  PubMed  Google Scholar 

  • Goto M, Swanson LW (2004) Axonal projections from the parasubthalamic nucleus. J Comp Neurol 469:581–607

    PubMed  Google Scholar 

  • Graeff FG, Guimarães FS, De Andrade TG, Deakin JF (1996) Role of 5-HT in stress, anxiety, and depression. Pharmacol Biochem Behav 54:129–141

    CAS  PubMed  Google Scholar 

  • Hanamori T, Kunitake T, Kato K, Kannan H (1998a) Neurons in the posterior insular cortex are responsive to gustatory stimulation of the pharyngolarynx, baroreceptor and chemoreceptor stimulation, and tail pinch in rats. Brain Res 785:97–106

    CAS  PubMed  Google Scholar 

  • Hanamori T, Kunitake T, Kato K, Kannan H (1998b) Responses of neurons in the insular cortex to gustatory, visceral, and nociceptive stimuli in rats. J Neurophysiol 79:2535–2545

    CAS  PubMed  Google Scholar 

  • Haque T, Akhter F, Kato T, Sato F, Takeda R, Higashiyama K, Moritani M, Bae YC, Sessle BJ, Yoshida A (2012) Somatotopic direct projections from orofacial areas of secondary somatosensory cortex to trigeminal sensory nuclear complex in rats. Neuroscience 219:214–233

    CAS  PubMed  Google Scholar 

  • Hattox AM, Priest CA, Keller A (2002) Functional circuitry involved in the regulation of whisker movements. J Comp Neurol 442:266–276

    PubMed  PubMed Central  Google Scholar 

  • Herman JP, Cullinan WE (1997) Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci 20:78–84

    CAS  PubMed  Google Scholar 

  • Hicks RR, Huerta MF (1991) Differential thalamic connectivity of rostral and caudal parts of cortical area Fr2 in rats. Brain Res 568:325–329

    CAS  PubMed  Google Scholar 

  • Huerta MF, Harting JK (1984) Connectional organization of the superior colliculus. Trends Neurosci 7:286–289

    Google Scholar 

  • Ikenoue E, Akhter F, Tsutsumi Y, Sato F, Ohara H, Uchino K, Furuta T, Tachibana Y, Yoshida A (2018) Transcortical descending pathways through granular insular cortex conveying orofacial proprioception. Brain Res 1687:11–19

    CAS  PubMed  Google Scholar 

  • Ito S (1992) Multiple projection of vagal non-myelinated afferents to the anterior insular cortex in rats. Neurosci Lett 148:151–154

    CAS  PubMed  Google Scholar 

  • Ito H, Yanase M, Yamashita A, Kitabatake C, Hamada A, Suhara Y, Narita M, Ikegami D, Sakai H, Yamazaki M, Narita M (2013) Analysis of sleep disorders under pain using an optogenetic tool: possible involvement of the activation of dorsal raphe nucleus-serotonergic neurons. Mol Brain 6:59. https://doi.org/10.1186/1756-6606-6-59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jerge CR (1963) The function of the nucleus supratrigeminalis. J Neurophysiol 26:393–402

    CAS  PubMed  Google Scholar 

  • Kawamura Y, Tsukamoto S (1960) Analysis of jaw movements from the cortical jaw motor area and amygdala. Jpn J Physiol 10:471–488

    CAS  PubMed  Google Scholar 

  • Kidokoro Y, Kubota K, Shuto S, Sumino R (1968) Possible interneurons responsible for reflex inhibition of motoneurons of jaw-closing muscles from the inferior dental nerve. J Neurophysiol 31:709–716

    CAS  PubMed  Google Scholar 

  • Kosinski RJ, Neafsey EJ, Castro AJ (1986) A comparative topographical analysis of dorsal column nuclear and cerebral cortical projections to the basilar pontine gray in rats. J Comp Neurol 244:163–173

    CAS  PubMed  Google Scholar 

  • Landgren S, Olsson KA (1980) The effect of electrical stimulation in the hypothalamus on the monosynaptic jaw closing and the disynaptic jaw opening reflexes in the cat. Exp Brain Res 39:389–400

    CAS  PubMed  Google Scholar 

  • Li YQ, Takada M, Kaneko T, Mizuno N (1995) Premotor neurons for trigeminal motor nucleus neurons innervating the jaw-closing and jaw-opening muscles: differential distribution in the lower brainstem of the rat. J Comp Neurol 356:563–579

    CAS  PubMed  Google Scholar 

  • Luo P, Wong R, Dessem D (1995) Projection of jaw-muscle spindle afferents to the caudal brainstem in rats demonstrated using intracellular biotinamide. J Comp Neurol 358:63–78

    CAS  PubMed  Google Scholar 

  • Luo P, Moritani M, Dessem D (2001) Jaw-muscle spindle afferent pathways to the trigeminal motor nucleus in the rat. J Comp Neurol 435:341–353

    CAS  PubMed  Google Scholar 

  • Ma WL, Zhang WB, Xiong KH, Guo F (2007) Visceral and orofacial somatic afferent fiber terminals converge onto the same neuron in paratrigeminal nucleus: An electron microscopic study in rats. Auton Neurosci 131:45–49

    PubMed  Google Scholar 

  • Malick A, Burstein R (1998) Cells of origin of the trigeminohypothalamic tract in the rat. J Comp Neurol 400:125–144

    CAS  PubMed  Google Scholar 

  • Malick A, Strassman RM, Burstein R (2000) Trigeminohypothalamic and reticulohypothalamic tract neurons in the upper cervical spinal cord and caudal medulla of the rat. J Neurophysiol 84:2078–2112

    CAS  PubMed  Google Scholar 

  • Mascaro MB, Prosdocimi FC, Bittencourt JC, Elias CF (2009) Forebrain projections to brainstem nuclei involved in the control of mandibular movements in rats. Eur J Oral Sci 117:676–684

    PubMed  Google Scholar 

  • Mesulam MM, Mufson EJ (1982) Insula of the old world monkey. III: efferent cortical output and comments on function. J Comp Neurol 212:38–52

    CAS  PubMed  Google Scholar 

  • Mihailoff GA, Kosinski RJ, Azizi SA, Border BG (1989) Survey of noncortical afferent projections to the basilar pontine nuclei: a retrograde tracing study in the rat. J Comp Neurol 282:617–643

    CAS  PubMed  Google Scholar 

  • Mitrofanis J (2005) Some certainty for the “zone of uncertainty”? Exploring the function of the zona incerta. Neuroscience 130:1–15

    CAS  PubMed  Google Scholar 

  • Miyazaki R, Luschei ES (1987) Responses of neurons in nucleus supratrigeminalis to sinusoidal jaw movements in the cat. Exp Neurol 96:145–157

    CAS  PubMed  Google Scholar 

  • Mizuno N (1970) Projection fibers from the main sensory trigeminal nucleus and the supratrigeminal region. J Comp Neurol 139:457–471

    CAS  PubMed  Google Scholar 

  • Nakamura Y, Kubo Y (1978) Masticatory rhythm in intracellular potential of trigeminal motoneurons induced by stimulation of orbital cortex and amygdala in cats. Brain Res 14:504–509

    Google Scholar 

  • Nakamura S, Inoue T, Nakajima K, Moritani M, Nakayama K, Tokita K, Yoshida A, Maki K (2008) Synaptic transmission from the supratrigeminal region to jaw-closing and jaw-opening motoneurons in developing rats. J Neurophysiol 100:1885–1896

    PubMed  Google Scholar 

  • Nonaka M, Nishimura A, Nakamura S, Nakayama K, Mochizuki A, Iijima T, Inoue T (2012) Convergent pre-motoneuronal inputs to single trigeminal motoneurons. J Dent Res 91:888–893

    CAS  PubMed  Google Scholar 

  • Notsu K, Tsumori T, Yokota S, Sekine J, Yasui Y (2008) Posterior lateral hypothalamic axon terminals are in contact with trigeminal premotor neurons in the parvicellular reticular formation of the rat medulla oblongata. Brain Res 1244:71–81

    CAS  PubMed  Google Scholar 

  • Ogawa H, Wang XD (2002) Neurons in the cortical taste area receive nociceptive inputs from the whole body as well as the oral cavity in the rat. Neurosci Lett 322:87–90

    CAS  PubMed  Google Scholar 

  • Ohta M, Moriyama Y (1986) Supratrigeminal neurons mediate the shortest, disynaptic pathway from the central amygdaloid nucleus to the contralateral trigeminal motoneurons in the rat. Comp Biochem Physiol A Comp Physiol 83:633–641

    CAS  PubMed  Google Scholar 

  • Oka A, Yamamoto M, Takeda R, Ohara H, Sato F, Akhter F, Haque T, Kato T, Sessle BJ, Takada K, Yoshida A (2013) Jaw-opening and -closing premotoneurons in the nucleus of the solitary tract making contacts with laryngeal and pharyngeal afferent terminals in rats. Brain Res 1540:48–63

    CAS  PubMed  Google Scholar 

  • Paik SK, Lee HJ, Choi MK, Cho YS, Park MJ, Moritani M, Yoshida A, Kim YS, Bae YC (2009) Ultrastructural analysis of glutamate-, GABA-, and glycine-immunopositive boutons from supratrigeminal premotoneurons in the rat trigeminal motor nucleus. J Neurosci Res 87:1115–1122

    CAS  PubMed  Google Scholar 

  • Papp RS, Palkovits M (2014) Brainstem projections of neurons located in various subdivisions of the dorsolateral hypothalamic area-an anterograde tract-tracing study. Front Neuroanat 8:34. https://doi.org/10.3389/fnana.2014.00034

    Article  PubMed  PubMed Central  Google Scholar 

  • Paxinos G, Watson C (1986) The Rat Brain in Stereotaxic Coordinates, 2nd edn. Academic Press, Sydney

    Google Scholar 

  • Paxinos G, Watson C (1998) The Rat Brain in Stereotaxic Coordinates, 4th edn. Academic Press, Sydney

    Google Scholar 

  • Paxinos G, Watson C (2014) The Rat Brain in Stereotaxic Coordinates, 7th edn. Academic Press, Sydney

    Google Scholar 

  • Peters J, Kalivas PW, Quirk GJ (2009) Extinction circuits for fear and addiction overlap in prefrontal cortex. Learn Mem 16:279–288

    PubMed  PubMed Central  Google Scholar 

  • Phelan KD, Falls WM (1989) The interstitial system of the spinal trigeminal tract in the rat: anatomical evidence for morphological and functional heterogeneity. Somatosens Mot Res 6:367–399

    CAS  PubMed  Google Scholar 

  • Porter JD, Donaldson IM (1991) The anatomical substrate for cat extraocular muscle proprioception. Neuroscience 43:473–483

    CAS  PubMed  Google Scholar 

  • Rokx JT, van Willigen JD, Jüch PJ (1986) Bilateral brainstem connections of the rat supratrigeminal region. Acta Anat (basel) 127:16–21

    CAS  Google Scholar 

  • Rosén I, Sjölund B (1973) Organization of group I activated cells in the main and external cuneate nuclei of the cat: identification of muscle receptors. Exp Brain Res 16:221–237

    PubMed  Google Scholar 

  • Sanders KH, Klein CE, Mayor TE, Heym C, Handwerker HO (1980) Differential effects of noxious and non-noxious input on neurones according to location in ventral periaqueductal grey or dorsal raphe nucleus. Brain Res 186:83–97

    CAS  PubMed  Google Scholar 

  • Sasamoto K, Ohta M (1982) Amygdaloid-induced jaw opening and facilitation or inhibition of the trigeminal motoneurons in the rat. Comp Biochem Physiol A Comp Physiol 73:349–354

    CAS  PubMed  Google Scholar 

  • Sasamoto K, Zhang G, Iwasaki M (1990) Two types of rhythmical jaw movements evoked by stimulation of the rat cortex. Jpn J Oral Biol 32:57–68

    CAS  Google Scholar 

  • Sato F, Akhter F, Haque T, Kato T, Takeda R, Nagase Y, Sessle BJ, Yoshida A (2013) Projections from the insular cortex to pain- receptive trigeminal caudal subnucleus (medullary dorsal horn) and other lower brainstem areas in rats. Neuroscience 233:9–27

    CAS  PubMed  Google Scholar 

  • Sato F, Uemura Y, Kanno C, Tsutsumi Y, Tomita A, Oka A, Kato T, Uchino K, Murakami J, Haque T, Tachibana Y, Yoshida A (2017) Thalamo-insular pathway conveying orofacial muscle proprioception in the rat. Neuroscience 365:158–178

    CAS  PubMed  Google Scholar 

  • Sato F, Kado S, Tsutsumi Y, Tachibana Y, Ikenoue E, Furuta T, Uchino K, Bae YC, Uzawa N, Yoshida A (2020) Ascending projection of jaw-closing muscle-proprioception to the intralaminar thalamic nuclei in rats. Brain Res 1739:146830. https://doi.org/10.1016/j.brainres.2020.146830

    Article  CAS  PubMed  Google Scholar 

  • Satoh Y, Ishizuka K, Murakami T (2007) Changes in cortically induced rhythmic jaw movements after lesioning of the red nucleus in rats. Brain Res 1165:60–70

    CAS  PubMed  Google Scholar 

  • Sawchenko PE, Brown ER, Chan RK, Ericsson A, Li HY, Roland BL, Kovacs KJ (1996) The paraventricular nucleus of the hypothalamus and the functional neuroanatomy of visceromotor responses to stress. Prog Brain Res 107:201–222

    CAS  PubMed  Google Scholar 

  • Shammah-Lagnado SJ, Alheid GF, Heimer L (2001) Striatal and central extended amygdala parts of the interstitial nucleus of the posterior limb of the anterior commissure: evidence from tract-tracing techniques in the rat. J Comp Neurol 439:104–126

    CAS  PubMed  Google Scholar 

  • Shigenaga Y, Mitsuhiro Y, Yoshida A, Cao CQ, Tsuru H (1988a) Morphology of single mesencephalic trigeminal neurons innervating masseter muscle of the cat. Brain Res 445:392–399

    CAS  PubMed  Google Scholar 

  • Shigenaga Y, Sera M, Nishimori T, Suemune S, Nishimura M, Yoshida A, Tsuru K (1988b) The central projection of masticatory afferent fibers to the trigeminal sensory nuclear complex and upper cervical spinal cord. J Comp Neurol 268:489–507

    CAS  PubMed  Google Scholar 

  • Shigenaga Y, Doe K, Suemune S, Mitsuhiro Y, Tsuru K, Otani K, Shirana Y, Hosoi M, Yoshida A, Kagawa K (1989) Physiological and morphological characteristics of periodontal mesencephalic trigeminal neurons in the cat –intra-axonal staining with HRP. Brain Res 505:91–110

    CAS  PubMed  Google Scholar 

  • Shigenaga Y, Mitsuhiro Y, Shirana Y, Tsuru H (1990) Two types of jaw-muscle spindle afferents in the cat as demonstrated by intra-axonal staining with HRP. Brain Res 514:219–237

    CAS  PubMed  Google Scholar 

  • Shimizu K, Asano M, Kitagawa J, Ogiso B, Ren K, Oki H, Matsumoto M, Iwata K (2006) Phosphorylation of extracellular signal-regulated kinase in medullary and upper cervical cord neurons following noxious tooth pulp stimulation. Brain Res 1072:99–109

    CAS  PubMed  Google Scholar 

  • Stanek IV E, Cheng S, Takatoh J, Han BX, Wang F (2014) Monosynaptic premotor circuit tracing reveals neural substrates for oro-motor coordination. eLife 3:e02511. https://doi.org/10.7554/eLife.02511

  • Swanson LW (2004) Brain maps: Structure of the rat brain. A laboratory guide with printed and electronic templates for data, models and schematics (3rd ed.). Elsevier, Amsterdam, The Netherlands

  • Swenson RS, Kosinski RJ, Castro AJ (1984) Topography of spinal, dorsal column nuclear, and spinal trigeminal projections to the pontine gray in rats. J Comp Neurol 222:301–311

    CAS  PubMed  Google Scholar 

  • Takata M, Kawamura Y (1970) Neurophysiologic properties of the supratrigeminal nucleus. Jap J Physiol 20:1–11

    CAS  Google Scholar 

  • Takemura M, Sugimoto T, Shigenaga Y (1991) Difference in central projection of primary afferents innervating facial and intraoral structures in the rat. Exp Neurol 111:324–331

    CAS  PubMed  Google Scholar 

  • Taylor A (1990) Neurophysiology of the Jaws and Teeth. Macmillan Press, London

    Google Scholar 

  • Ter Horst GJ, Copray JC, Liem RS, Van Willigen JD (1991) Projections from the rostral parvocellular reticular formation to pontine and medullary nuclei in the rat: involvement in autonomic regulation and orofacial motor control. Neuroscience 40:735–758

    PubMed  Google Scholar 

  • Thompson RH, Swanson LW (2003) Structural characterization of a hypothalamic visceromotor pattern generator network. Brain Res Brain Res Rev 41:153–202

    CAS  PubMed  Google Scholar 

  • Tomita A, Kato T, Sato F, Haque T, Oka A, Yamamoto M, Ono T, Bae YC, Maeda Y, Sessle BJ, Yoshida A (2012) Somatotopic direct projections from orofacial areas of primary somatosensory cortex to pons and medulla, especially to trigeminal sensory nuclear complex, in rats. Neuroscience 200:166–185

    CAS  PubMed  Google Scholar 

  • Torvik A (1956) Afferent connections to the sensory trigeminal nuclei, the nucleus of the solitary tract and adjacent structures. J Comp Neurol 106:51–141

    CAS  PubMed  Google Scholar 

  • Travers JB, Norgren R (1983) Afferent projections to the oral motor nuclei in the rat. J Comp Neurol 220:280–298

    CAS  PubMed  Google Scholar 

  • Tsutsumi Y, Mizuno Y, Haque H, Sato F, Furuta T, Oka A, Moritani M, Bae YC, Yamashiro T, Tachibana Y, Yoshida A (2021) Widespread corticopetal projections from the oval paracentral nucleus of the intralaminar thalamic nuclei conveying orofacial proprioception in rats. Brain Struct Funct 226:1115–1133

    PubMed  Google Scholar 

  • Uchida T, Adachi K, Fujita S, Lee J, Gionhaku N, Cools AR, Koshikawa N (2005) Role of GABAA receptors in the retrorubral filed and ventral pallidum in rat jaw movements elicited by dopaminergic stimulation of the nucleus accumbens shell. Eur J Pharmacol 510:39–47

    CAS  PubMed  Google Scholar 

  • Uchino K, Higashiyama K, Kato T, Haque T, Sato F, Tomita A, Tsutsumi K, Moritani M, Yamamura K, Yoshida A (2015) Jaw movement-related primary somatosensory cortical area in the rat. Brain Res 284:55–64

    CAS  Google Scholar 

  • Uemura Y, Haque T, Sato F, Tsutsumi Y, Ohara H, Oka A, Furuta T, Bae YC, Yamashiro T, Tachibana Y, Yoshida A (2020) Proprioceptive thalamus receiving forelimb and neck muscle spindle inputs via the external cuneate nucleus in the rat. Brain Struct Funct 225:2177–2192

    PubMed  Google Scholar 

  • Valverde F (1962) Reticular formation of the albino rat’s brain stem cytoarchitecture and corticofugal connections. J Comp Neurol 119:25–53

    CAS  PubMed  Google Scholar 

  • Van Eden CG, Lamme VA, Uylings HB (1992) Heterotopic cortical afferents to the medial prefrontal cortex in the rat. A combined retrograde and anterograde tracer study. Eur J Neurosci 4:77–97

    PubMed  Google Scholar 

  • VanderWerf F, Aramideh M, Ongerboer de Visser BW, Baljet B, Speelman JD, Otto AJ (1997) A retrograde double fluorescent tracing study of the levator palpebrae superioris muscle in the cynomolgus monkey. Exp Brain Res 113:174–179

    CAS  PubMed  Google Scholar 

  • Vidal-Gonzalez I, Vidal-Gonzalez B, Rauch SL, Quirk GJ (2006) Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear. Learn Mem 13:728–733

    PubMed  PubMed Central  Google Scholar 

  • Weiner S, Shaikh MB, Siegel A (1993) Electromyographic activity in the masseter muscle resulting from stimulation of hypothalamic behavioral sites in the cat. J Orofac Pain 7:370–377

    CAS  PubMed  Google Scholar 

  • Wiesendanger R, Wiesendanger M (1982) The corticopontine system in the rat. II. The Projection Pattern J Comp Neurol 208:227–238

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Yuyama N, Kawamura Y (1981) Cortical neurons responding to tactile, thermal and taste stimulations of the rat’s tongue. Brain Res 221:202–206

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Matsuo R, Kiyomitsu Y, Kitamura R (1988) Sensory inputs from the oral region to the cerebral cortex in behaving rats: an analysis of unit responses in cortical somatosensory and taste areas during ingestive behavior. J Neurophysiol 60:1303–1321

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Matsuo R, Kiyomitsu Y, Kitamura R (1989) Sensory and motor responses of trigeminal and reticular neurons during ingestive behavior in rats. Exp Brain Res 76:386–400

    CAS  PubMed  Google Scholar 

  • Yamamoto M, Moritani M, Chang Z, Taki I, Tomita A, Ono T, Bae YC, Shigenaga Y, Yoshida A (2007) The somatotopic organization of trigeminal premotoneurons in the cat brainstem. Brain Res 1149:111–117

    CAS  PubMed  Google Scholar 

  • Yasui Y, Kayahara T, Shiroyama T, Nakano K (1993) Neurons in the intertrigeminal region of the rat send projection fibers to the superior colliculus. Neurosci Lett 159:39–42

    CAS  PubMed  Google Scholar 

  • Yasui Y, Tsumori T, Ando A, Domoto T, Kayahara T, Nakano K (1994) Descending projections from the superior colliculus to the reticular formation around the motor trigeminal nucleus and the parvicellular reticular formation of the medulla oblongata in the rat. Brain Res 656:420–426

    CAS  PubMed  Google Scholar 

  • Yasui Y, Tsumori T, Ando A, Domoto T (1995) Demonstration of axon collateral projections from the substantia nigra pars reticulata to the superior colliculus and the parvicellular reticular formation in the rat. Brain Res 674:122–126

    CAS  PubMed  Google Scholar 

  • Yoshida A, Taki I, Chang Z, Iida C, Haque T, Tomita A, Seki S, Yamamoto S, Masuda Y, Moritani M, Shigenaga Y (2009) Corticofugal projections to trigeminal motoneurons innervating antagonistic jaw muscles in rats as demonstrated by anterograde and retrograde tract tracing. J Comp Neurol 514:368–386

    PubMed  Google Scholar 

  • Yoshida A, Fujio T, Sato F, Ali MS, Haque T, Ohara H, Moritani M, Kato T, Dostrovsky JO, Tachibana Y (2017) Orofacial proprioceptive thalamus of the rat. Brain Struct Funct 222:2655–2669

    PubMed  Google Scholar 

  • Zhang GX, Sasamoto K (1990) Projections of two separate cortical areas for rhythmical jaw movements in the rat. Brain Res Bull 24:221–230

    CAS  PubMed  Google Scholar 

  • Zhou Q, Imbe H, Dubner R, Ren K (1999) Persistent Fos protein expression after orofacial deep or cutaneous tissue inflammation in rats: implications for persistent orofacial pain. J Comp Neurol 412:276–291

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Grants-in-Aid for Scientific Research of the Japan Society for the Promotion of Science (18K19641 and 18KK0259 to A.Y., and 17K11608 and 20K09888 to F.S.).

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript. AY and YTa conceptualized the hypothesis, designed and supervised the experiments and directed the data analysis. MI, FS, YM and YTs, carried out the experiments and data analysis. TF and KU helped with the experiments and data analysis. AY, MI, FA, YCB, YTa and TI finalized the figures and text.

Corresponding authors

Correspondence to Atsushi Yoshida or Yoshihisa Tachibana.

Ethics declarations

Conflicts of interest

The authors have no financial or other relationships to report that might lead to a conflict of interest.

Ethical approval

Detailed protocols for the care and use of laboratory animals were approved by the animal ethics committees of the Osaka University Graduate School of Dentistry.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshida, A., Inoue, M., Sato, F. et al. Efferent and afferent connections of supratrigeminal neurons conveying orofacial muscle proprioception in rats. Brain Struct Funct 227, 111–129 (2022). https://doi.org/10.1007/s00429-021-02391-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-021-02391-9

Keywords

Navigation