Skip to main content

Advertisement

Log in

Long, intrinsic horizontal axons radiating through and beyond rat barrel cortex have spatial distributions similar to horizontal spreads of activity evoked by whisker stimulation

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Stimulation of a single whisker evokes a peak of activity that is centered over the associated barrel in rat primary somatosensory cortex, and yet the evoked local field potential and the intrinsic signal optical imaging response spread symmetrically away from this barrel for over 3.5 mm to cross cytoarchitectonic borders into other “unimodal” sensory cortical areas. To determine whether long horizontal axons have the spatial distribution necessary to underlie this activity spread, we injected adeno-associated viral vectors into barrel cortex and characterized labeled axons extending from the injection site in transverse sections of flattened cortex. Combined qualitative and quantitative analyses revealed labeled axons radiating diffusely in all directions for over 3.5 mm from supragranular injection sites, with density declining over distance. The projection pattern was similar at four different cortical depths, including infragranular laminae. Infragranular vector injections produced patterns similar to the supragranular injections. Long horizontal axons were detected both using a vector with a permissive cytomegalovirus promoter to label all neuronal subtypes and using a calcium/calmodulin-dependent protein kinase II α vector to restrict labeling to excitatory cortical pyramidal neurons. Individual axons were successfully reconstructed from series of supragranular sections, indicating that they traversed gray matter only. Reconstructed axons extended from the injection site, left the barrel field, branched, and sometimes crossed into other sensory cortices identified by cytochrome oxidase staining. Thus, radiations of long horizontal axons indeed have the spatial characteristics necessary to explain horizontal activity spreads. These axons may contribute to multimodal cortical responses and various forms of cortical neural plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Armstrong-James M, Callahan CA (1991) Thalamo-cortical processing of vibrissal information in the rat. II. Spatiotemporal convergence in the thalamic ventroposterior medial nucleus (VPm) and its relevance to generation of receptive fields of s1 cortical “barrel” neurons. J Comp Neurol 303:211–224

    Article  CAS  PubMed  Google Scholar 

  • Armstrong-James M, Callahan CA, Friedman MA (1991) Thalamo-cortical processing of vibrissal information in the rat. I. Intracortical origins of surround but not centre-receptive fields of layer IV neurones in the rat S1 barrel field cortex. J Comp Neurol 303:193–210

    Article  CAS  PubMed  Google Scholar 

  • Armstrong-James M, Diamond ME, Ebner FF (1994) An innocuous bias in whisker use in adult rats modifies receptive fields of barrel cortex neurons. J Neurosci 14:6978–6991

    CAS  PubMed  Google Scholar 

  • Arnold PB, Li CX, Waters RS (2001) Thalamocortical arbors extend beyond single cortical barrels: an in vivo intracellular tracing study in rat. Exp Brain Res 136:152–168

    Article  CAS  PubMed  Google Scholar 

  • Aronoff R, Matyas F, Mateo C, Ciron C, Schneider B, Petersen CCH (2010) Long-range connectivity of mouse primary somatosensory barrel cortex. Eur J Neurosci 31:2221–2233

    Article  PubMed  Google Scholar 

  • Bernardo KL, McCasland JS, Woolsey TA, Strominger RN (1990) Local intra- and interlaminar connections in mouse barrel cortex. J Comp Neurol 291:231–255

    Article  CAS  PubMed  Google Scholar 

  • Bokor H, Acsády L, Deschênes M (2008) Vibrissal responses of thalamic cells that project to the septal columns of the barrel cortex and to the second somatosensory area. J Neurosci 28:5169–5177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bota M, Dong H-W, Swanson LW (2012) Combining collation and annotation efforts toward completion of the rat and mouse connectomes in BAMS. Front Neuroinform 6:2. doi:10.3389/fninf.2012.00002

    Article  PubMed  PubMed Central  Google Scholar 

  • Boucsein C, Nawrot MP, Schnepel P, Aetrsen A (2011) Beyond the cortical column: abundance and physiology of horizontal connections imply a strong role for inputs from the surround. Front Neurosci 5:32. doi:10.3389/fnins.2011.00032

    Article  PubMed  PubMed Central  Google Scholar 

  • Brecht M, Roth A, Sakmann B (2003) Dynamic receptive fields of reconstructed pyramidal cells in layers 3 and 2 of rat somatosensory barrel cortex. J Physiol 553:243–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brett-Green B, Chen-Bee CH, Frostig RD (2001) Comparing the functional representations of central and border whiskers in the rat primary somatosensory cortex. J Neurosci 21:9944–9954

    CAS  PubMed  Google Scholar 

  • Broser PJ, Erdogan S, Grinevich V, Osten P, Sakmann B, Wallace DJ (2008) Automated axon length quantification for populations of labelled neurons. J Neurosci Methods 169:43–54

    Article  PubMed  Google Scholar 

  • Brumberg JC, Pinto DJ, Simons DJ (1996) Spatial gradients and inhibitory summation in the rat whisker barrel system. J Neurophysiol 76:130–140

    CAS  PubMed  Google Scholar 

  • Budinger E, Heil P, Hess A, Scheich H (2006) Multisensory processing via early cortical stages: connections of the primary auditory cortical field with other sensory sytems. Neurosci 143:1065–1083

    Article  CAS  Google Scholar 

  • Burger C, Goratyuk OS, Velardo MJ, Peden CS, Williams P, Zolotukhin S, Reier PJ, Mandel RJ, Muzyczka N (2004) Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther 10:302–317

    Article  CAS  PubMed  Google Scholar 

  • Burgin KE, Waxham MN, Rickling S, Westgate SA, Mobley WC, Kelly PT (1990) In situ hybridization histochemistry of Ca2+/calmodulin-dependent protein kinase in developing rat brain. J Neurosci 10:1788–1798

    CAS  PubMed  Google Scholar 

  • Cahill L, Ohl F, Scheich H (1996) Alteration of auditory cortex activity with a visual stimulus through conditioning: a 2-deoxyglucose analysis. Neurobiol Learn Mem 65:213–222

    Article  CAS  PubMed  Google Scholar 

  • Campi KL, Karlen SJ, Bales KL, Krubitzer L (2007) Organization of sensory neocortex in prairie voles (Microtus ochrogaster). J Comp Neurol 502:414–426

    Article  PubMed  Google Scholar 

  • Campi KL, Bales KL, Grunewald R, Krubitzer L (2010) Connections of auditory and visual cortex in the prairie vole (Microtus ochrogaster): evidence for multisensory processing in primary sensory areas. Cereb Cortex 20:89–108

    Article  PubMed  Google Scholar 

  • Carvell GE, Simons DJ (1987) Thalamic and corticocortical connections of the second somatic sensory area of the mouse. J Comp Neurol 265:409–427

    Article  CAS  PubMed  Google Scholar 

  • Castle MJ, Gershenson ZT, Giles AR, Holzbaur ELF, Wolfe JH (2014) AAV serotypes 1, 8, and 9 share conserved mechanisms for anterograde and retrograde axonal transport. Hum Gene Ther 25:705–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cearley CN, Wolfe JH (2007) A single injection of an adeno-associated virus vector into nuclei with divergent connections results in widespread vector distribution in the brain and global correction of a neurogenetic disease. J Neurosci 27:9928–9940

    Article  CAS  PubMed  Google Scholar 

  • Chamberlin NL, Du B, de Lacalle S, Saper CB (1998) Recombinant adeno-associated virus vector: use for transgene expression and anterograde tract tracing in the CNS. Brain Res 793:169–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapin JK, Sadeq M, Guise JL (1987) Corticocortical connections within the primary somatosensory cortex of the rat. J Comp Neurol 263:326–346

    Article  CAS  PubMed  Google Scholar 

  • Charbonneau V, Laramée M-E, Boucher V, Bronchti G, Boire D (2012) Cortical and subcortical projections to primary visual cortex in anophthalmic, enucleated and sighted mice. Eur J Neurosci 36:2949–2963

    Article  PubMed  Google Scholar 

  • Chen-Bee CH, Kwon M, Masino SA, Frostig RD (1996) Areal extent quantification of functional representations using intrinsic signal optical imaging. J Neurosci Methods 68:27–37

    Article  CAS  PubMed  Google Scholar 

  • Chen-Bee CH, Zhou Y, Jacobs N, Lim B, Frostig RD (2012) Whisker array functional representation in the rat barrel cortex: transcendence of one-to-one topography and its underlying mechanism. Front Neural Circuits 6:93. doi:10.3389/fncir.2012.00093

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiaia NL, Rhoades RW, Fish SE, Killackey HP (1991) Thalamic processing of vibrissal information in the rat. II. Morphological and functional properties of medial ventral posterior nucleus and posterior nucleus neurons. J Comp Neurol 314:217–236

    Article  CAS  PubMed  Google Scholar 

  • Chmielowska J, Carvell GE, Simons DJ (1989) Spatial organization of thalamocortical and corticothalamic projection systems in the rat SmI barrel cortex. J Comp Neurol 285:325–338

    Article  CAS  PubMed  Google Scholar 

  • Diamond ME, Armstrong-James M, Ebner FF (1992) Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus. J Comp Neurol 318:462–476

    Article  CAS  PubMed  Google Scholar 

  • Diamond ME, Armstrong-James M, Ebner FF (1993) Experience-dependent plasticity in adult rat barrel cortex. Proc Natl Acad Sci USA 90:2082–2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabri M, Burton H (1991) Ipsilateral cortical connections of primary somatic sensory cortex in rats. J Comp Neurol 311:405–424

    Article  CAS  PubMed  Google Scholar 

  • Feldmeyer D (2012) Excitatory neuronal connectivity in the barrel cortex. Front Neuroanat 6:24. doi:10.3389/fnana.2012.00024

    Article  PubMed  PubMed Central  Google Scholar 

  • Feldmeyer D, Brecht M, Helmchen F, Petersen CCH, Poulet JFA, Staiger JF, Luhmann Schwarz C (2013) Barrel cortex function. Prog Neurobiol 103:3–27

    Article  PubMed  Google Scholar 

  • Ferezou I, Haiss F, Gentet LJ, Aronoff R, Weber B, Petersen CC (2007) Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice. Neuron 56:907–923

    Article  CAS  PubMed  Google Scholar 

  • Fox K, Wright N, Wallace H, Glazewski S (2003) The origin of cortical surround receptive fields studied in the barrel cortex. J Neurosci 23:8380–8391

    CAS  PubMed  Google Scholar 

  • Frostig RD, Xiong Y, Chen-Bee CH, Kvasnák E, Stehberg J (2008) Large-scale organization of rat sensorimotor cortex based on a motif of large activation spreads. J Neurosci 28:13274–13284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glazewski S, McKenna M, Jacquin M, Fox K (1998) Experience-dependent depression of vibrissae responses in adolescent rat barrel cortex. Eur J Neurosci 10:2107–2116

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb JP, Keller A (1997) Intrinsic circuitry and physiological properties of pyramidal neurons in rat barrel cortex. Exp Brain Res 115:47–60

    Article  CAS  PubMed  Google Scholar 

  • Harris JA, Oh SW, Zeng H (2012) Adeno-associated viral vectors for anterograde axonal tracing with fluorescent proteins in nontransgenic and Cre driver mice. Curr Protoc Neurosci 59:1.20.1–1.20.18

  • Helmstaedter M, Sakmann B, Feldmeyer D (2008) Neuronal correlates of local, lateral, and translaminar inhibition with reference to cortical columns. Cereb Cortex 19:926–937

    Article  PubMed  Google Scholar 

  • Henschke JU, Noesselt T, Scheich H, Budinger E (2015) Possible anatomical pathways for short-latency multisensory integration processes in primary sensory cortices. Brain Struct Funct 220:955–977

    Article  PubMed  Google Scholar 

  • Hirata A, Castro-Alamancos MA (2008) Cortical transformation of wide-field (multiwhisker) sensory responses. J Neurophysiol 100:358–370

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoeflinger BF, Bennett-Clarke CA, Chiaia NL, Killackey HP, Rhoades RW (1995) Patterning of local intracortical projections within the vibrissae representation of rat primary somatosensory cortex. J Comp Neurol 354:551–563

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Elyada YM, Bosking WH, Walker T, Fitzpatrick D (2014) Optogenetic assessment of horizontal interactions in primary visual cortex. J Neurosci 34:4976–4990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunt DL, Yamoah EN, Krubitzer L (2006) Multisensory plasticity in congenitally deaf mice: how are cortical areas functionally specified? Neuroscience 139:1507–1524

    Article  CAS  PubMed  Google Scholar 

  • Iurilli G, Ghezzi D, Olcese U, Lassi G, Nazzaro C, Tonini R, Tucci V, Benfenati F, Medini P (2012) Sound-driven synaptic inhibition in primary visual cortex. Neuron 73:814–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacquin MF, Mooney RD, Rhoades RW (1986) Morphology, response properties, and collateral projections of trigeminothalamic neurons in brainstem subnucleus interpolaris of rat. Exp Brain Res 61:457–468

    Article  CAS  PubMed  Google Scholar 

  • Jacquin MF, Barcia M, Rhoades RW (1989) Structure-function relationships in rat brainstem subnucleus interpolaris: IV. Projection neurons. J Comp Neurol 282:45–62

    Article  CAS  PubMed  Google Scholar 

  • Johnson BA, Frostig RD (2015) Photonics meets connectomics: case of diffuse, long-range horizontal projections in rat cortex. Neurophotonics (in press)

  • Kaas JH (2012) Evolution of columns, modules, and domains in the neocortex of primates. Proc Natl Acad Sci USA109:10655–10660

  • Katz Y, Heiss JE, Lampl I (2006) Cross-whisker adaptation of neurons in the rat barrel cortex. J Neurosci 26:13363–13372

    Article  CAS  PubMed  Google Scholar 

  • Kim U, Ebner FF (1999) Barrels and septa: separate circuits in rat barrel field cortex. J Comp Neurol 408:489–505

    Article  CAS  PubMed  Google Scholar 

  • Kim U, Lee T (2013) Intra-areal and corticocortical circuits arising in the dysgranular zone of rat primary somatosensory cortex that process deep somatic input. J Comp Neurol 521:2585–2601

    Article  CAS  PubMed  Google Scholar 

  • Koralek K-A, Jensen KF, Killackey HP (1988) Evidence for two complementary patterns of thalamic input to the rat somatosensory cortex. Brain Res 463:346–351

    Article  CAS  PubMed  Google Scholar 

  • Koralek K-A, Olavarria J, Killackey HP (1990) Areal and laminar organization of corticocortical projections in the rat somatosensory cortex. J Comp Neurol 299:133–150

    Article  CAS  PubMed  Google Scholar 

  • Laramée M-E, Rockland KS, Prince S, Bronchti G, Boire D (2013) Principal component and cluster analysis of layer V pyramidal cells in visual and non-visual cortical areas projecting to the primary visual cortex of the mouse. Cereb Cortex 23:714–728

    Article  PubMed  Google Scholar 

  • Larsen DD, Luu JD, Burns ME, Krubitzer L (2009) What are the effects of severe visual impairment on the cortical organization and connectivity of primary visual cortex? Front Neuroanat 3:30. doi:10.3389/neuro.05.030.2009

    PubMed  PubMed Central  Google Scholar 

  • Lay CC, Davis MF, Chen-Bee CH, Frostig RD (2010) Mild sensory stimulation completely protects the adult rodent cortex from ischemic stroke. PLoS One 5:e11270. doi:10.1371/journal.pone.0011270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lay CC, Jacobs N, Hancock AM, Zhou Y, Frostig RD (2013) Complete sensory-induced protection from ischemic stroke under isoflurane anesthesia. Eur J Neurosci 38:2445–2452

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee T, Alloway KD, Kim U (2011) Interconnected cortical networks between primary somatosensory cortex septal columns and posterior parietal cortex in rat. J Comp Neurol 519:405–419

    Article  PubMed  Google Scholar 

  • Lim DH, Mohajerani MH, LeDue J, Boyd J, Chen S, Murphy TH (2012) In vivo large-scale cortical mapping using channelrhodopsin-2 stimulation in transgenic mice reveals asymmetric and reciprocal relationships between cortical areas. Front Neural Circuits 6:11. doi:10.3389/fncir.2012.00011

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu SM, Lin RC (1993) Thalamic afferents of the rat barrel cortex, a light- and electron-microscopic study using Phaseolus vulgaris leucoagglutinin as an anterograde tracer. Somatosens Mot Res 10:1–16

    Article  CAS  PubMed  Google Scholar 

  • Marik SA, Yamahachi H, McManus JNJ, Szabo G, Gilbert CD (2010) Axonal dynamics of excitatory and inhibitory neurons in somatosensory cortex. PLoS Biol 8(6):e1000395. doi:10.1371/journal.pbio.1000395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martin KA, Roth S, Rusch ES (2014) Superficial layer pyramidal cells communicate heterogeneously between multiple functional domains of cat primary visual cortex. Nat Commun 5:5252. doi:10.1038/ncomms6252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masino SA (2003) Quantitative comparison between functional imaging and single-unit spiking in rat somatosensory cortex. J Neurophysiol 89:1702–1712

    Article  PubMed  Google Scholar 

  • Masino SA, Kwon MC, Dory Y, Frostig RD (1993) Characterization of functional organization within rat barrel cortex using intrinsic signal optical imaging through a thinned skull. Proc Natl Acad Sci USA 90:9998–10002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McFarland N, Lee JS, Hyman B, McLean P (2009) Comparison of transduction efficiency of recombinant AAV serotypes 1, 2, 5, and 8 in the rat nigrostriatal system. J Neurochem 109:838–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller MW, Vogt BA (1984) Direct connections of rat visual cortex with sensory, motor, and association cortices. J Comp Neurol 226:184–202

    Article  CAS  PubMed  Google Scholar 

  • Mirabella G, Battiston S, Diamond ME (2001) Integration of multiple-whisker inputs in rat somatosensory cortex. Cereb Cortex 11:164–170

    Article  CAS  PubMed  Google Scholar 

  • Mohajerani MH, Chan AW, Mohsenvand M, LeDue J, Liu R, McVea DA, Boyd JD, Wang YT, Reimers M, Murphy TH (2013) Spontaneous cortical activity alternates between motifs defined by regional axonal projections. Nat Neurosci 16:1426–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120:701–722

    Article  PubMed  Google Scholar 

  • Narayanan RT, Egger R, Johnson AS, Mansvelder HD, Sakmann B, de Kock CP, Oberlaender M (2015) Beyond columnar organization: cell type- and target layer-specific principles of horizontal axon projection patterns in rat vibrissal cortex. Cereb Cortex. doi:10.1093/cercor/bhv053

    Google Scholar 

  • Nathanson JL, Yanagawa Y, Obata K, Callaway EM (2009) Preferential labeling of inhibitory and excitatory cortical neurons by endogenous tropism of adeno-associated virus and lentivirus vectors. Neuroscience 161:441–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolelis MAL, Chapin JK (1994) Spatiotemporal structure of somatosensory responses of many-neuron ensembles in the rat ventral posterior medial nucleus of the thalamus. J Neurosci 14:3511–3532

    CAS  PubMed  Google Scholar 

  • Oberlaender M, Boudewijns ZSRM, Kleele T, Mansvelder HD, Sakmann B, de Kock CPJ (2011) Three-dimensional axon morphologies of individual layer 5 neurons indicate cell type-specific intracortical pathways for whisker motion and touch. Proc Natl Acad Sci USA 108:4188–4199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry AM, Mortrud MT, Ouellette B, Nguyen TN, Sorensen SA, Slaughterbeck CR, Wakeman W, Li Y, Feng D, Ho A, Nicholas E, Hirokawa KE, Bohn P, Joines KM, Peng H, Hawrylycz MJ, Phillips JW, Hohmann JG, Wohnoutka P, Gerfen CR, Koch C, Bernard A, Dang C, Jones AR, Zeng H (2014) A mesoscale connectome of the mouse brain. Nature 508:207–214

    Article  CAS  PubMed  Google Scholar 

  • Paperna T, Malach R (1991) Patterns of sensory intermodality relationships in the cerebral cortex of the rat. J Comp Neurol 308:432–456

    Article  CAS  PubMed  Google Scholar 

  • Pierret T, Lavallée P, Deschênes M (2000) Parallel streams for the relay of vibrissal information through thalamic barreloids. J Neurosci 20:7455–7462

    CAS  PubMed  Google Scholar 

  • Polley DB, Chen-Bee CH, Frostig RD (1999) Two directions of plasticity in the sensory-deprived adult cortex. Neuron 24:623–637

    Article  CAS  PubMed  Google Scholar 

  • Provost N, Le Meur G, Weber M, Mendes-Madeira A, Podevin G, Cherel Y, Colle M-A, Deschamps J-Y, Moullier P, Rolling F (2004) Biodistribution of rAAV vectors following intraocular administration: evidence for the presence and persistence of vector DNA in the optic nerve and in the brain. Mol Ther 11:275–283

    Article  CAS  Google Scholar 

  • Rubio-Garrido P, Pérez-de-Manzo F, Porrero C, Galazo MJ, Clascá F (2009) Thalamic input to distal apical dendrites in neocortical layer 1 is massive and highly convergent. Cereb Cortex 19:2380–2395

    Article  PubMed  Google Scholar 

  • Sachdev RNS, Krause MR, Mazer JA (2012) Surround suppression and sparse coding in visual and barrel cortices. Front Neural Circuit 6:43. doi:10.3389/fncir.2012.00043

    Article  Google Scholar 

  • Sepulcre J (2014) Functional streams and cortical integration in the human brain. Neuroscientist 20:499–508

    Article  PubMed  Google Scholar 

  • Shimegi S, Ichikawa T, Akasaki T, Sato H (1999) Temporal characteristics of response integration evoked by multiple whisker stimulations in the barrel cortex of rats. J Neurosci 19:10164–10175

    CAS  PubMed  Google Scholar 

  • Simons DJ, Carvell GE (1989) Thalamocortical response transformation in the rat vibrissa/barrel system. J Neurophysiol 61:311–330

    CAS  PubMed  Google Scholar 

  • Sporns O (2013) The human connectome: origins and challenges. NeuroImage 80:53–61

    Article  PubMed  Google Scholar 

  • Stehberg J, Dang PT, Frostig RD (2014) Unimodal primary sensory cortices are directly connected by long-range horizontal projections in the rat sensory cortex. Front Neuroanat 8:93. doi:10.3389/fnana.2014.00093

    Article  PubMed  PubMed Central  Google Scholar 

  • Stettler DD, Das A, Bennett J, Gilbert CD (2002) Lateral connectivity and contextual interactions in macaque primary visual cortex. Neuron 36:739–750

    Article  CAS  PubMed  Google Scholar 

  • Taymans J-M, Vandenberghe LH, van den Haute C, Thiry I, Deroose CM, Mortelmans L, Wilson JM, Debyser Z, Baekelandt V (2007) Comparative analysis of adeno-associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain. Human Gene Ther 18:195–206

    Article  CAS  Google Scholar 

  • Toldi J, Joo F, Feher O, Wolff JR (1988) Modified distribution patterns of responses in rat visual cortex induced by monocular enucleation. Neuroscience 24:59–66

    Article  CAS  PubMed  Google Scholar 

  • Van Essen DC (2013) Cartography and connectomes. Neuron 80:775–790

    Article  PubMed  CAS  Google Scholar 

  • Vasconcelos N, Pantoja J, Belchior H, Caixeta FV, Faber J, Freire MAM, Cota VR, de Macedo EA, Laplagne DA, Gomes HM, Ribiero S (2011) Cross-modal responses in the primary visual cortex encode complex objects and correlate with tactile discrimination. Proc Natl Acad Sci USA 108:15408–15413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viaene AN, Petrof I, Sherman M (2011) Properties of the thalamic projection from the posterior medial nucleus to primary and secondary somatosensory cortices in the mouse. Proc Natl Acad Sci USA 108:18156–18161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace MN (1987) Histochemical demonstration of sensory maps in the rat and mouse cerebral cortex. Brain Res 418:178–182

    Article  CAS  PubMed  Google Scholar 

  • Wallace MT, Ramachandran R, Stein BE (2004) A revised view of sensory cortical parcellation. Proc Natl Acad Sci USA 101:2167–2172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zhang C, Szábo G, Sun Q-Q (2013) Distribution of CaMKIIα expression in the brain in vivo, studied by CaMKIIα-GFP mice. Brain Res 1518:9–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wester JC, Contreras D (2012) Columnar interactions determine horizontal propagation of recurrent network activity in neocortex. J Neurosci 32:5454–5471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White E, Bienemann A, Sena-Esteves M, Taylor H, Bunnun C, Castrique E, Gill S (2011) Evaluation and optimization of the administration of recombinant adeno-associated viral vectors (serotypes 2/1, 2/2, 2/rh8, 2/9, and 2/rh10) by convection-enhanced delivery to the striatum. Human Gene Ther 22:237–251

    Article  CAS  Google Scholar 

  • Wimmer VC, Bruno RM, de Kock CP, Kuner T, Sakmann B (2010) Dimensions of a projection column and architecture of VPM and POm axons in rat vibrissal cortex. Cereb Cortex 20:2265–2276

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolff JR, Toldi J, Siklós L, Fehér Joó F (1992) Neonatal enucleation induces correlated modification in sensory responsive areas and pial angioarchitecture of the parietal and occipital cortex of albino rats. J Comp Neurol 317:187–194

    Article  CAS  PubMed  Google Scholar 

  • Wong-Riley MT, Welt C (1980) Histochemical changes in cytochrome oxidase of cortical barrels after vibrissal removal in neonatal and adult mice. Proc Natl Acad Sci USA 77:2333–2337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright N, Fox K (2010) Origins of cortical layer V surround receptive fields in the rat barrel cortex. J Neurophysiol 103:709–724

    Article  PubMed  Google Scholar 

  • Zakiewicz IM, Bjaalie JG, Leergaard TB (2014) Brain-wide map of efferent projections from rat barrel cortex. Front Neuroinform 8:5. doi:10.3389/fninf.2014.00005

    Article  PubMed  PubMed Central  Google Scholar 

  • Zilles K, Amunts K (2010) Centenary of Brodmann’s map—conception and fate. Nat Reviews 11:139–145

    Article  CAS  Google Scholar 

  • Zingg B, Hintiryan H, Gou L, Song MY, Bay M, Bienkowski MS, Foster NN, Yamashita S, Bowman I, Toga AW, Dong H-W (2014) Neural networks of the mouse neocortex. Cell 156:1096–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the United States National Institute for Neurological Disorders and Stroke (PHS Grants NS-055832 and NS-066001). We thank Daniel D. Johnson for designing many of the quantitative approaches used here, and for writing custom MatLab software to facilitate data collection and analysis. We also thank many students who performed imaging, tracing, and axon reconstruction described here: Joel Ramirez, Theodore Nieblas, Ajitesh Singh, Karishma Patel, Gordon Man, Roblen Guevarra, Raymond Jed Singson, Keli Tahara, Pejman Majd, Jason Louie, Rika Takada, Keith Uyeno, Jeremy Chen, Joel Fong, Velinda Liao, Bahram Rabbani, Marina Gerges, Julie Liang, Camillia Azimi, Maria Najam, Paul Lang, George Khamo, Hilda Zuñiga, Julian Huynh, Tiffany Do, Sean Siguenza, Ambrose Ha, Min Kim, Troy Ruff, Francisco Lee, Justin Hung, and John Hakim. We acknowledge further the creative contributions of Paul Lang, Camillia Azimi, Keli Tahara, Joel Ramirez, Roblen Guevarra, Gordon Man, Pejman Majd, Jason Louie, and Theodore Nieblas. Finally, we thank Cynthia Chen-Bee and Nathan Jacobs for valuable suggestions throughout the project and Dr. Cynthia Woo for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. Frostig.

Ethics declarations

Ethical standards

We declare that all animal studies have been approved by the appropriate ethics committee (see “Materials and methods”) and have, therefore, been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. The manuscript does not contain clinical studies or patient data.

Conflict of interest

We declare that we have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1. (pdf 782 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, B.A., Frostig, R.D. Long, intrinsic horizontal axons radiating through and beyond rat barrel cortex have spatial distributions similar to horizontal spreads of activity evoked by whisker stimulation. Brain Struct Funct 221, 3617–3639 (2016). https://doi.org/10.1007/s00429-015-1123-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-015-1123-7

Keywords

Navigation