Skip to main content
Log in

Correlation between corpus callosum shape and cognitive performance in healthy young adults

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Corpus callosum (CC) might be related to cognitive performance because of its role in interhemispheric communication. Previous research has focused mainly on volumetric analyses of the CC, yielding contradictory results to some extent. Shape is an approach that integrates and extends the data obtained with the volumetric methodology. Here, we analyze the relationships between midsagittal CC shape variation and several cognitive measures. 2D coordinates from 102 MRI-scanned young adult human CCs were superimposed through a Procrustes approach. The residual variation was regressed onto 21 cognitive measures completed by the participants. Most of these measures (including general intelligence, working memory, executive functioning, and mental speed) were unrelated to midsagittal CC morphology. However, attentional control did show consistent and significant correlations with CC shape variation. Slower responses in attentional control were systematically associated with more curved and thinner CC, with consequent rotation of the splenium and the genu. Although the magnitude of the correlations suggests a small relationship of midsagittal CC geometry and attention, the results provide interesting clues regarding the links between brain anatomical configuration and human cognitive function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aboitiz F, Scheibel AB, Fisher RS, Zaidel E (1992) Individual differences in brain asymmetries and fiber composition in the human corpus callosum. Brain Res 598:154–161

    Article  PubMed  CAS  Google Scholar 

  • Ackerman PL, Beier ME, Boyle MO (2002) Individual differences in working memory within a normological network of cognitive and perceptual speed abilities. J Exp Psychol Gen 131:567–589

    Article  PubMed  Google Scholar 

  • Allin M, Nosarti C, Narberhaus A, Walshe M, Frearson S, Kalpakidou A, Wyatt J, Rifkin L, Murray L (2007) Growth of the corpus callosum in adolescents born preterm. Arch Pediatr Adolesc Med 161:1183–1189

    Article  PubMed  Google Scholar 

  • Banich M, Brown W (2000) A life-span perspective on interaction between the cerebral hemispheres. Dev Neuropsychol 18:1–10

    Article  PubMed  CAS  Google Scholar 

  • Bennett GK, Seashore HG, Wesman AG (1990) Differential aptitude test, 5th edn. TEA, Madrid

    Google Scholar 

  • Bookstein FL (1989) Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans Pattern Anal Machine Intell 11:567–585

    Article  Google Scholar 

  • Bookstein FL (1991) Morphometric tools for landmark data. Cambridge University Press, Cambridge

    Google Scholar 

  • Bookstein FL (1997) Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Med Image Anal 1:225–243

    Article  PubMed  CAS  Google Scholar 

  • Bookstein FL (2003) Morphometrics for callosal shape studies. In: Zaidel E, Iacoboni M (eds) The parallel brain: the cognitive neuroscience of the corpus callosum. MIT Press, Massachusetts, pp 75–91

    Google Scholar 

  • Bookstein FL, Sampson PD, Streissguth AP, Connor PD (2001) Geometric morphometrics of corpus callosum and subcortical structures in the fetal-alcohol-affected brain. Teratology 64:4–32

    Article  PubMed  CAS  Google Scholar 

  • Bookstein FL, Streissguth AP, Sampson PD, Connor PD, Barr HM (2002) Corpus callosum shape and neuropsychological deficits in adult males with heavy fetal alcohol exposure. NeuroImage 15:233–251

    Article  PubMed  Google Scholar 

  • Born CM, Meisenzahl EM, Frodl T, Pfluger T, Reiser M, Möller HJ, Leinsinger GL (2004) The septum pellucidum and its variants. Eur Arch Psychiatry Clin Neurosci 254:295–302

    Article  PubMed  Google Scholar 

  • Bornstein RA, Schwarzkopf SB, Olson SC, Nasrallah HA (1992) Third-ventricle enlargement and neuropsychological deficit in schizophrenia. Biol Psychiatry 31:954–961

    Article  PubMed  CAS  Google Scholar 

  • Bruner E (2007) Cranial shape and size variation in human evolution: structural and functional perspectives. Childs Nerv Syst 23:1357–1365

    Article  PubMed  Google Scholar 

  • Bruner E, Jeffery N (2007) Extracting functional, phylogenetic and structural data from the subcortical brain: an exploratory geometric morphometric survey. J Anthropol Sci 85:125–138

    Google Scholar 

  • Bruner E, de la Cuétara JM, Colom R, Martín-Loeches M (2012) Gender-related differences in the shape of the human corpus callosum are associated with allometric variations. J Anat 220:417–421

    Article  PubMed  Google Scholar 

  • Bruner E, Martín-Loeches M, Burgaleta M, Colom R (2011) Midsagittal brain shape correlation with intelligence and cognitive performance. Intelligence 39:141–147

    Article  Google Scholar 

  • Casanova F, El-Baz A, Elnakib A, Giedd J, Rumsey JM, Williams EM, Switala AE (2010) Corpus callosum shape analysis with application to dyslexia. Trans Neurosci 1:124–130

    Article  Google Scholar 

  • Collette F, Van der Linden M (2002) Brain imaging of the central executive component of working memory. Neurosci Behav Rev 26:105–125

    Article  Google Scholar 

  • Colom R, Abad F, Quiroga MA, Shih PC, Flores-Mendoza C (2008) Working memory and intelligence are highly related constructs but why? Intelligence 36:584–606

    Article  Google Scholar 

  • Colom R, Haier RJ, Head K, Álvarez-Linera J, Quiroga MA, Shih PC, Jung RE (2009) Gray matter correlates of fluid, crystallized, and spatial intelligence: testing the P-FIT model. Intelligence 37:124–135

    Article  Google Scholar 

  • Davidson CA, Kuroki N, Alvarado JL, Niznikiewicz MA, McCarley RW, Levitt JJ (2012) An MRI study of septi pellucidi in relation to hippocampus volume and fornix integrity in schizophrenia. Schizophr Res 134:165–170

    Article  PubMed  Google Scholar 

  • Elnakib A, Casanova MF, Gimel’farb G, Switala AE, El-Bazh A (2011) Austism diagnostics by centerline-based shape analysis of the corpus callosum. IEEE Int Symp Biomed Imaging 8:1843–1846

    Google Scholar 

  • Eriksen BA, Eriksen CW (1974) Effects of noise letters upon the identification of target letter in a non-search task. Percept Psychophys 16:143–149

    Article  Google Scholar 

  • Ganjavi H, Lewis JD, Bellec P, MacDonald PA, Waber DP, Evans AC, Karama S (2011) Negative associations between corpus callosum midsagittal area and IQ in a representative sample of healthy children and adolescents. PLoS One 6:e19698. doi:10.1371/journal.pone.0019698

    Article  PubMed  CAS  Google Scholar 

  • Giedd JN, Blumenthal J, Molloy E, Castellanos FX (2001) Brain imaging of attention deficit/hyperactivity disorder. Ann N Y Acad Sci 931:33–49

    Article  PubMed  CAS  Google Scholar 

  • Gower JC, Dijksterhuis GB (2004) Procrustes problems. Oxford University Press, Oxford

    Book  Google Scholar 

  • Gunz P, Mitteroecker P, Bookstein FL (2005) Semilandmarks in three dimensions. In: Slice DE (ed) Modern morphometrics in physical anthropology. Kluwer Academic/Plenum Publishers, New York, pp 73–98

    Chapter  Google Scholar 

  • Haier R, Jung R, Yeo R, Head K, Alkire M (2004) Structural brain variation and general intelligence. NeuroImage 23:425–433

    Article  PubMed  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaentol Electron 4:1–9

    Google Scholar 

  • Hilgetag CC, Barbas H (2006) Role of mechanical factors in the morphology of the primate cerebral cortex. PLOS Comput Biol 2:e22

    Article  PubMed  Google Scholar 

  • Hockey A, Geffen G (2004) The concurrent validity and test–retest reliability of a visuospatial memory task. Intelligence 32:591–605

    Article  Google Scholar 

  • Hofman MA (1989) On the evolution and geometry of the brain in mammals. Progress Neurobiol 32:137–158

    Article  CAS  Google Scholar 

  • Horga G, Bernacer J, Dusi N, Entis J, Chu K, Hazlett EA, Mehmet Haznedar M, Kemether E, Byne W, Buchsbaum MS (2011) Correlations between ventricular enlargement and gray and white matter volumes of cortex, thalamus, striatum, and internal capsule in schizophrenia. Eur Arch Psychiatry Clin Neurosci 261:467–476

    Article  PubMed  Google Scholar 

  • Huang H, Zhang J, Jiang H, Wakana S, Poetscher L, Miller MI, van Zijl PCM, Hillis AE, Wytik R, Mori S (2005) DTI tractography based parcellation of white matter: application to the mid-sagittal morphology of corpus callosum. NeuroImage 26:195–205

    Article  PubMed  Google Scholar 

  • Hutchinson A, Mathias J, Jacobson B, Ruzic L, Bond A, Banich MT (2009) Relationship between intelligence and the size and composition of the corpus callosum. Exp Brain Res 192:455–464

    Article  PubMed  Google Scholar 

  • Kane MJ, Hambrick DZ, Tuholski SW, Wilhelm O, Payne TW, Engle RW (2004) The generality of working memory capacity: a latent-variable approach to verbal and visuospatial memory span and reasoning. J Exp Psychol Gen 133:189–217

    Article  PubMed  Google Scholar 

  • Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357

    Article  PubMed  Google Scholar 

  • Luck SJ, Gold JM (2008) The construct of attention in schizophrenia. Biol Psychiatry 64:34–39

    Article  PubMed  Google Scholar 

  • Luders E, Narr K, Bilder R, Thompson P, Szeszko P, Hamilton M, Toga AW (2007a) Positive correlations between corpus callosum thickness and intelligence. NeuroImage 37:1457–1464

    Article  PubMed  Google Scholar 

  • Luders E, Di Paola M, Tomaiuolo F, Thompson PM, Toga AW, Vicari S, Petrides M, Caltagirone C (2007b) Callosal morphology in Williams syndrome: a new evaluation of shape and thickness. Neuroreport 18:203–207

    Article  PubMed  Google Scholar 

  • Luders E, Narr KR, Hamilton LS, Phillips OR, Thompson PM, Valle JS, Del’Homme M, Strickland T, McCracken JT, Toga AW, Levitt JG (2009) Decreased callosal thickness in attention-deficit/hyperactivity disorder. Biol Psychiatry 65:84–88

    Article  PubMed  Google Scholar 

  • Luders E, Thompson PM, Narr KR, Zamanyan A, Chou YY, Gutman B, Dinov ID, Toga AW (2011) The link between callosal thickness and intelligence in healthy children and adolescents. Neuroimage 54:1823–1830

    Article  PubMed  Google Scholar 

  • Mardia KV, Dryden IL (1998) Statistical shape analysis. Wiley, Chichester

    Google Scholar 

  • Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A (2000) The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: a latent variable analysis. Cogn Psychol 41:9–100

    Article  Google Scholar 

  • Miyake A, Friedman NP, Rettinger DA, Shah P, Hegarty M (2001) How are visuospatial working memory, executive functioning, and spatial abilities related? A latent-variable analysis. J Exp Psychol Gen 130:621–640

    Article  PubMed  CAS  Google Scholar 

  • Monteiro LR (1999) Multivariate regression models and geometric morphometrics: the search for causal factors in the analysis of shape. System Biol 48:192–199

    Article  CAS  Google Scholar 

  • Posner MI, Rothbart MK (1998) Attention, self-regulation and consciousness. Philos Trans R Soc Lond B 353:1915–1927

    Article  CAS  Google Scholar 

  • Raven J, Raven JC, Court JH (1998) Raven manual section 4: advanced progressive matrices. Oxford Psychologists Press, Oxford

    Google Scholar 

  • Richtsmeier JT, Aldridge K, de Leon VB, Panchal J, Kane AA, Marsh JL, Yan P, Cole TM (2006) Phenotypic integration of neurocranium and brain. J Exp Zool (Mol Dev Evol) 306B:360–378

    Article  Google Scholar 

  • Rohlf JF (2004). tpsSuper 1.14. Department of Ecology and Evolution, SUNY, Stony Brook, New York

  • Rohlf FJ (2005) TpsDig2. TpsSeries. Department of Ecology and Evolution, SUNY, Stony Brook, New York

  • Rohlf FJ, Corti M (2000) Use of two-block partial least-squares to study covariation in shape. Syst Biol 49:740–753

    Article  PubMed  CAS  Google Scholar 

  • Rüsch N, Luders E, Lieb K, Zahn R, Ebert D, Thompson PM, Toga AW, Tebartz van Elst L (2007) Corpus callosum abnormalities in women with borderline personality disorder and comorbid attention-deficit hyperactivity disorder. J Psychiatry Neurosci 32:417–422

    PubMed  Google Scholar 

  • Shallice T (1998) From neuropsychology to mental structure. Cambridge University Press, Cambridge

    Google Scholar 

  • Shaw P, Greenstein D, Lerch J, Clasen L, Lenroot R, Gogtay N, Evans A, Rapoport J, Giedd J (2006) Intellectual ability and cortical development in children and adolescents. Nature 440:676–679

    Article  PubMed  CAS  Google Scholar 

  • Simon JR (1969) Reactions toward the source of stimulation. J Exp Psychol 81:174–176

    Article  PubMed  CAS  Google Scholar 

  • Springer SP, Deutsch G (2001) Left brain, right brain: perspectives from cognitive neuroscience. WH Freeman and Company/Worth Publishers, Hampshire

    Google Scholar 

  • Thurstone L (1938) Primary mental abilities. Psychometric Monographs No. 1

  • Verkhlyutov VM, Gapienko GV, Ushakov VL, Portnova GV, Verkhlyutova IA, Anisimov NV, Pirogov YA (2010) MRI morphometry of the cerebral ventricles in patients with attention deficit hyperactivity disorder. Neurosci Behav Physiol 40:295–303

    Article  PubMed  CAS  Google Scholar 

  • Walterfang M, Yung A, Wood AG, Reutens DC, Phillips L, Wood SJ, Chen J, Velakoulis D, McGorry PD, Pantelis C (2008) Corpus callosum shape alterations in individuals prior to the onset of psychosis. Schizophr Res 103:1–10

    Article  PubMed  Google Scholar 

  • Walterfang M, Yücel M, Barton S, Reutens DC, Wood AG, Chen J, Lorenzetti V, Velakoulis D, Pantelis D, Allen NG (2009a) Corpus callosum size and shape in individuals with current and past depression. J Affect Disord 115:411–420

    Article  PubMed  Google Scholar 

  • Walterfang M, Wood AG, Barton S, Velakoulis D, Chen J, Reutens DC, Kempton MJ, Haldane M, Pantelis C, Frangou S (2009b) Corpus callosum size and shape alterations in individuals with bipolar disorder and their first-degree relatives. Prog Neuropsychopharmacol Biol Psychiatry 33:1050–1057

    Article  PubMed  Google Scholar 

  • Yela M (1969) Rotación de Figuras Macizas (rotation of solid figures). TEA, Madrid

    Google Scholar 

  • Zelditch ML, Swidersky DL, Sheets HD, Fink WL (2004) Geometric morphometrics for biologists. Elsevier, San Diego

    Google Scholar 

Download references

Acknowledgments

We are grateful to Miguel Burgaleta for his help in data sampling, and three anonymous referees for their helpful comments. Emiliano Bruner and José Manuel de la Cuétara are funded by the Ministerio de Ciencia e Innovación, Spain (CGL2009-12703-C03-01/02/03), by the Junta de Castilla y León (Grupo de Excelencia GR-249), and by the Italian Institute of Anthropology. Roberto Colom is funded by Ministerio de Ciencia e Innovación, Spain (PSI2010-20364). Manuel Martin-Loeches is funded by the Ministerio de Ciencia e Innovación, Spain (PSI2010-19619).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Martín-Loeches.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín-Loeches, M., Bruner, E., de la Cuétara, J.M. et al. Correlation between corpus callosum shape and cognitive performance in healthy young adults. Brain Struct Funct 218, 721–731 (2013). https://doi.org/10.1007/s00429-012-0424-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-012-0424-3

Keywords

Navigation