Skip to main content
Log in

Reduction of cerebellar grey matter in Crus I and II in schizophrenia

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Structural deficiencies within the cerebellum have been associated with schizophrenia. Whereas several region-of-interest-based studies have shown deviations in cerebellar volume, meta-analyses on conventional whole-brain voxel-based morphometry (VBM) studies do not implicate abnormalities in the cerebellum. Since this discrepancy could be due to methodological problems of VBM, we used a cerebellum-optimized VBM procedure. We acquired high-resolution MRI scans from 29 schizophrenia patients and 45 healthy controls and used a VBM approach utilizing the Spatially Unbiased Infratentorial toolbox (Diedrichsen in Neuroimage 33:127–138, 2006). Relative to healthy controls, schizophrenia patients showed reductions of grey matter volume in the left cerebellum Crus I/II that were correlated with thought disorder (p < 0.05; one-sided) and performance in the Trail-making test B (p < 0.01). No cerebellar group differences were detected employing conventional whole-brain VBM. The results derived from the cerebellum analysis provide evidence for distinct grey matter deficits in schizophrenia located in Crus I/II. The association of this area with thought disorder and Trail-making performance supports the previously suggested role of the cerebellum in coordination of mental processes including disordered thought in schizophrenia. The failure of conventional VBM to detect such effects suggests that previous studies might have underestimated the importance of cerebellar structural deficits in schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andreasen NC (1997) Thought, language, and communication disorders. I. Clinical assessment, definition of terms, and evaluation of their reliability. Arch Gen Psychiatry 36:1315–1321

    Article  Google Scholar 

  • Andreasen NC (1999) A unitary model of schizophrenia. Bleuler’s “fragmented phrene” as schizencephaly. Arch Gen Psychiatry 56:781–787

    Article  PubMed  CAS  Google Scholar 

  • Andreasen NC, Pierson R (2008) The role of the cerebellum in schizophrenia. Biol Psychiatry 64:81–88

    Article  PubMed  Google Scholar 

  • Andreasen NC, O’Leary DS, Cizadlo T, Arndt S, Rezai K, Ponto LL, Watkins GL, Hichwa RD (1996) Schizophrenia and cognitive dysmetria: a positron-emission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry. Proc Natl Acad Sci USA 93:9985–9990

    Article  PubMed  CAS  Google Scholar 

  • Andreasen NC, Paradiso S, O’Leary DS (1998) “Cognitive dysmetria” as an integrative theory of schizophrenia: a dysfunction in cortical-cerebellar circuitry? Schizophr Bull 24:203–218

    PubMed  CAS  Google Scholar 

  • Andreasen NC, Nopoulos P, O’Leary DS, Miller DD, Wassink T, Flaum M (1999) Defining the phenotype of schizophrenia: cognitive dysmetria and its neural mechanisms. Biol Psychiatry 46:908–920

    Article  PubMed  CAS  Google Scholar 

  • Barak Y, Aizenberg D, Mirecki I, Mazeh D, Achiron A (2002) Very late-onset schizophrenia-like psychosis: clinical and imaging characteristics in comparison with elderly patients with schizophrenia. J Nerv Ment Dis 190:733–736

    Article  PubMed  Google Scholar 

  • Bilder RM, Goldman RS, Robinson D, Reiter G, Bell L, Bates JA, Pappadppulos E, Willson DF, Alvir JM, Woerner MG, Geisler S, Kane JM, Lieberman JA (2000) Neuropsychology of firstepisode schizophrenia: initial characterization and clinical correlates. Am J Psychiatry 157:549–559

    Article  PubMed  CAS  Google Scholar 

  • Bleuler E (1911) Dementia praecox oder Gruppe der Schizophrenien. F. Deuticke, Leipzig

    Google Scholar 

  • Chan RC, Gottesman II (2008) Neurological soft signs as candidate endophenotypes for schizophrenia: a shooting star or a Northern star? Neurosci Biobehav Rev 32:957–971

    Article  PubMed  Google Scholar 

  • Cheung C, Yu K, Fung G, Leung M, Wong C, Li Q, Sham P, Chua S, McAlonan G (2010) Autistic disorders and schizophrenia: related or remote? An anatomical likelihood estimation. PLoS One 5:e12233

    Article  PubMed  Google Scholar 

  • Chua SE, Cheung C, Cheung V, Tsang JT, Chen EY, Wong JC, Cheung JP, Yip L, Tai KS, Suckling J, McAlonan GM (2007) Cerebral grey, white matter and csf in never-medicated, first-episode schizophrenia. Schizophr Res 89:12–21

    Article  PubMed  Google Scholar 

  • Crespo-Facorro B, Paradiso S, Andreasen NC, O’Leary DS, Watkins GL, Boles Ponto LL, Hichwa RD (1999) Recalling word lists reveals “cognitive dysmetria” in schizophrenia: a positron emission tomography study. Am J Psychiatry 156:386–392

    PubMed  CAS  Google Scholar 

  • D’Agata F, Caroppo P, Boghi A, Coriasco M, Caglio M, Baudino B, Sacco K et al (2011) Linking coordinative and executive dysfunctions to atrophy in spinocerebellar ataxia 2 patients. Brain Struct Funct 216:275–288

    Article  PubMed  Google Scholar 

  • Dazzan P, Lloyd T, Morgan KD, Zanelli J, Morgan C, Orr K, Hutchinson G et al (2008) Neurological abnormalities and cognitive ability in first-episode psychosis. Br J Psychiatry 193:197–202

    Article  PubMed  Google Scholar 

  • Di X, Chan RCK, Gong Q (2009) White matter reduction in patients with schizophrenia as revealed by voxel-based morphometry: an activation likelihood estimation meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 33:1390–1394

    Article  PubMed  Google Scholar 

  • Diedrichsen J (2006) A spatially unbiased atlas template of the human cerebellum. Neuroimage 33:127–138

    Article  PubMed  Google Scholar 

  • Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N (2009) A probabilistic MR atlas of the human cerebellum. Neuroimage 46:39–46

    Article  PubMed  Google Scholar 

  • Diedrichsen J, Verstynen T, Schlerf J, Wiestler T (2010) Advances in functional imaging of the human cerebellum. Curr Opin Neurol 23:382–387

    PubMed  Google Scholar 

  • Fan L, Tang Y, Sun B, Gong G, Chen ZJ, Lin X, Yu T et al (2010) Sexual dimorphism and asymmetry in human cerebellum: an MRI-based morphometric study. Brain Res 1353:60–73

    Article  PubMed  CAS  Google Scholar 

  • First MB, Gibbon M, Spitzer RL, Williams JBW, Benjamin L (1996) User’s guide for the structured clinical interview for DSM-IV axis II personality disorders (SCID-II). Biometrics Research Department, New York State Psychiatric Institute, New York

  • Fornito A, Yücel M, Patti J, Wood SJ, Pantelis C (2009) Mapping grey matter reductions in schizophrenia: an anatomical likelihood estimation analysis of voxel-based morphometry studies. Schizophr Res 108:104–113

    Article  PubMed  CAS  Google Scholar 

  • Franke P, Maier W, Hardt J, Hain C (1993) Cognitive functioning and anhedonia in subjects at risk for schizophrenia. Schizophr Res 10:77–84

    Article  PubMed  CAS  Google Scholar 

  • Glahn DC, Liard AR, Ellison-Wright I, Thelen SM, Robinson JL (2008) Meta-analysis of gray matter anomalies in schizophrenia: application of anatomic likelihood estimation and network analysis. Biol Psychiatry 64:774–781

    Article  PubMed  Google Scholar 

  • Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14:21–36

    Article  PubMed  CAS  Google Scholar 

  • Goodglass H, Kaplan E (1972) The assessment of aphasia and related disorders. Lea & Febiger, Philadelphia

    Google Scholar 

  • Gupta S, Andreasen NC, Arndt S, Flaum M, Schultz SK, Hubbard WC, Smith M (1995) Neurological soft signs in neuroleptic-naive and neuroleptic-treated schizophrenic patients and in normal comparison subjects. Am J Psychiatry 152:191–196

    PubMed  CAS  Google Scholar 

  • Heath R, Franklin D, Shraberg D (1979) Gross pathology of the cerebellum in patients diagnosed and treated as functional psychiatric disorders. J Nerv Ment Dis 167:585–592

    Article  PubMed  CAS  Google Scholar 

  • Hinkle DE, Wiersma W, Jurs SG (1988) Applied statistics for the behavioral sciences, 2nd edn. Houghton Mifflin Company, Boston

    Google Scholar 

  • Honea R, Crow TJ, Passingham D, Mackay CE (2005) Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatry 162:2233–2245

    Article  PubMed  Google Scholar 

  • Keller A, Castellanos FX, Vaituzis AC, Jeffries NO, Giedd JN, Rapoport JL (2003) Progressive loss of cerebellar volume in childhood-onset schizophrenia. Am J Psychiatry 160:128–133

    Article  PubMed  Google Scholar 

  • Kerns JG, Berenbaum H (2002) Cognitive impairments associated with formal thought disorder in people with schizophrenia. J Abnorm Psychol 111:211–224

    Article  PubMed  Google Scholar 

  • Kircher TTJ, Liddle PF, Brammer MJ, Williams SCR, Murray RM, McGuire P (2001) Neural correlates of formal thought disorder in schizophrenia. Arch Gen Psychiatry 58:769–774

    Article  PubMed  CAS  Google Scholar 

  • Konarski JZ, McIntyre RS, Grupp LA, Kennedy SH (2005) Is the cerebellum relevant in the circuitry of neuropsychiatric disorders? Rev Psychiatr Neurosci 30:178–186

    Google Scholar 

  • Levitt JJ, McCarley RW, Nestor PG, Petrescu C, Donnino R, Hirayasu Y et al (1999) Quantitative volumetric MRI study of the cerebellum and vermis in schizophrenia: clinical and cognitive correlates. Am J Psychiatry 156:1105–1107

    PubMed  CAS  Google Scholar 

  • Liddle PF, Morris DL (1991) Schizophrenic syndromes and frontal lobe performance. Br J Psychiatry 158:340–345

    Article  PubMed  CAS  Google Scholar 

  • Mackworth JF, Taylor MM (1963) The d’ measure of signal detectability during vigilance-like situations. Can J Psychol 17:302–325

    Article  PubMed  CAS  Google Scholar 

  • Nasrallah HA, McCalley-Whitters M, Jacoby CG (1982) Cortical atrophy in schizophrenia and mania: a comparative CT study. J Clin Psychiatry 43:439–441

    PubMed  CAS  Google Scholar 

  • Overall JE, Gorham DR (1962) The Brief Psychiatric Rating Scale. Psychol Reports 10:799–812

    Article  Google Scholar 

  • Picard H, Amado I, Mouchet-Mages S, Olie JP, Krebs MO (2008) The role of the cerebellum in schizophrenia: an update of clinical, cognitive, and functional evidences. Schizophr Bull 34:155–172

    Article  PubMed  Google Scholar 

  • Rasser PE, Schall U, Peck G, Cohen M, Johnston P, Khoo K, Carr VJ, Ward PB, Thompson PM (2010) Cerebellar grey matter deficits in first-episode schizophrenia mapped using cortical pattern matching. Neuroimage 53:1175–1180

    Article  PubMed  Google Scholar 

  • Reitan RM, Wolfson D (1996) The Halstead–Reitan neuropsychological test battery: theory and clinical interpretation, 2nd edn. Neuropsychology Press, Tucson

    Google Scholar 

  • Riley EM, McGovern D, Mockler D, Doku VC, O’Ceallaigh S, Fannon DG, Tannakoon L, Santamaria M, Soni W, Morris RG, Sharma T (2000) Neuropsychological functioning in first-episode psychosis—evidence of specific deficits. Schizophr Res 43:47–55

    Article  PubMed  CAS  Google Scholar 

  • Schmahmann JD (1991) An emerging concept: the cerebellar contribution to higher function. Arch Neurology 48:1178–1187 and 49:1230

    Google Scholar 

  • Sheehan RV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, Hergueta T, Baker R, Dunbar GC (1998) The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic interview for DSM-IV and ICD-10. J Clin Psychiatry 59(Suppl 20):22–33

    Google Scholar 

  • Stoodley CJ, Schmahmann JD (2010) Functional topography in the human cerebellum. A meta-analysis of neuroimaging studies. Neuroimage 44:489–501

    Article  Google Scholar 

  • Strick PL, Dum RP, Fiez JA (2009) Cerebellum and nonmotor function. Annu Rev Neurosci 32:413–434

    Article  PubMed  CAS  Google Scholar 

  • Stroop JR (1935) Studies of interference in serial verbal reactions. J Exp Psychol 18:643–662

    Article  Google Scholar 

  • Thurstone LL (1938) Primary mental abilities. University of Chicago Press, Chicago

    Google Scholar 

  • Venkatasubramanian G (2010) Neuroanatomical correlates of psychopathology in antipsychotic-naïve schizophrenia. Indian J Psychiatry 52:28–36

    Article  PubMed  Google Scholar 

  • Walter H, Vasic N, Hose A, Spitzer M, Wolf RC (2007) Working memory dysfunction in schizophrenia compared to healthy controls and patients with depression: evidence from event-related fMRI. Neuroimage 35:1551–1561

    Article  PubMed  Google Scholar 

  • Ward BD (2000) Simultaneous inference for fMRI data. AFNI AlphaSim Documentation, Medical College of Wisconsin

    Google Scholar 

  • Weinberger DR, DeLisi LE, Perman GP, Targum S, Wyatt RJ (1982) Computed tomography in schizophreniform disorder and other acute psychiatric disorders. Arch Gen Psychiatry 39:778–783

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

SK is a Postdoctoral Fellow of the Research Foundation Flanders (FWO).

Conflict of interest

The authors report no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Kühn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kühn, S., Romanowski, A., Schubert, F. et al. Reduction of cerebellar grey matter in Crus I and II in schizophrenia. Brain Struct Funct 217, 523–529 (2012). https://doi.org/10.1007/s00429-011-0365-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-011-0365-2

Keywords

Navigation