Skip to main content

Advertisement

Log in

TGFβ splicing and canonical pathway activation in high-grade serous carcinoma

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

The present study analyzed the expression and clinical role of the transforming growth factor-β (TGFβ) pathway in high-grade serous carcinoma (HGSC), with focus on malignant effusions. TGFβ1–3 and TGFβRI–III mRNA expression by qRT-PCR was analyzed in 70 HGSC effusions and 55 solid specimens (28 ovarian, 27 abdominal metastases). Protein expression of Smad2 and Smad3 and their phosphorylated forms by Western blotting was analyzed in 73 specimens (42 effusions, 13 ovarian carcinomas, 18 solid metastases). Expression was analyzed for association with anatomic site and clinical parameters, including survival. TGFβRI and TGFβRII mRNA was overexpressed in effusions and solid metastases, particularly the former, compared to that in the ovarian tumors (p < 0.001 to p = 0.05), with anatomic site-dependent expression of splice variants. Conversely, Smad2, p-Smad2, and p-Smad3 were overexpressed in solid specimens (ovarian and peritoneal) compared to those in effusions (p < 0.001 for all). In univariate survival analysis, higher TGFβRI variant 1 and TGFβRIII mRNA levels were associated with a trend for shorter overall survival in patients with post-chemotherapy effusions (p = 0.066 and p = 0.087, respectively), and the latter was an independent prognostic marker in Cox multivariate analysis (p = 0.041). Smad3 protein expression was associated with a trend for shorter overall survival in univariate survival analysis (p = 0.052). TGFβ receptor splice variant expression is anatomic site-dependent in HGSC. Elevated levels of TGFβ signaling pathway mRNAs are seen in metastatic HGSC, but are not accompanied by increased Smad expression and activation in HGSC effusions, evidence of failure to activate canonical TGFβ signaling. Assessment of the prognostic role of this pathway in HGSC effusions merits further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Meulmeester E, Ten Dijke P (2011) The dynamic roles of TGF-β in cancer. J Pathol 223(2):205–218

    Article  CAS  PubMed  Google Scholar 

  2. Smith AL, Robin TP, Ford HL (2012) Molecular pathways: targeting the TGF-β pathway for cancer therapy. Clin Cancer Res 18(17):4514–4521

    Article  CAS  PubMed  Google Scholar 

  3. Ikushima H, Miyazono K (2010) TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer 10(6):415–424

    Article  CAS  PubMed  Google Scholar 

  4. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425(6958):577–584

    Article  CAS  PubMed  Google Scholar 

  5. Konrad L, Scheiber JA, Völck-Badouin E, Keilani MM, Laible L, Brandt H, Schmidt A, Aumüller G, Hofmann R (2007) Alternative splicing of TGF-betas and their high-affinity receptors T beta RI, T beta RII and T beta RIII (betaglycan) reveal new variants in human prostatic cells. BMC Genomics 8:318

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhang YE (2009) Non-Smad pathways in TGF-beta signaling. Cell Res 19(1):128–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mu Y, Gudey SK, Landström M (2012) Non-Smad signaling pathways. Cell Tissue Res 347(1):11–20

    Article  CAS  PubMed  Google Scholar 

  8. Davidson B, Tropé CG (2014) Ovarian cancer: diagnostic, biological and prognostic aspects. Womens Health (Lond) 10(5):519–533

    Article  CAS  Google Scholar 

  9. Chou JL, Chen LY, Lai HC, Chan MW (2014) TGFβ: friend or foe? The role of TGFβ/SMAD signaling in epigenetic silencing of ovarian cancer and its implication in epigenetic therapy. Expert Opin Ther Targets 14(11):1213–1223

    Article  Google Scholar 

  10. Thigpen JT, Blessing JA, Ball H, Hummel SJ, Barrett RJ (1994) Phase II trial of paclitaxel in patients with progressive ovarian carcinoma after platinum-based chemotherapy: a Gynecologic Oncology Group study. J Clin Oncol 12(9):1748–1753

    Article  CAS  PubMed  Google Scholar 

  11. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92(3):205–216

    Article  CAS  Google Scholar 

  12. Hurteau JA, Allison B, Sutton GP, Moore DH, Look KY, Hurd W, Bigsby RM (1999) Transforming growth factor-beta differentially inhibits epithelial ovarian carcinoma cells from primary and metastatic isolates without up-regulation of p21WAF1. Cancer 85(8):1810–1815

    Article  CAS  PubMed  Google Scholar 

  13. Cai J, Tang H, Xu L, Wang X, Yang C, Ruan S, Guo J, Hu S, Wang Z (2012) Fibroblasts in omentum activated by tumor cells promote ovarian cancer growth, adhesion and invasiveness. Carcinogenesis 33(1):20–29

    Article  CAS  PubMed  Google Scholar 

  14. Cheon DJ, Tong Y, Sim MS, Dering J, Berel D, Cui X, Lester J, Beach JA, Tighiouart M, Walts AE, Karlan BY, Orsulic S (2014) A collagen-remodeling gene signature regulated by TGF-β signaling is associated with metastasis and poor survival in serous ovarian cancer. Clin Cancer Res 20(3):711–723

    Article  CAS  PubMed  Google Scholar 

  15. Ho CM, Shih DT, Hsiao CC, Huang SH, Chang SF, Cheng WF (2015) Gene methylation of human ovarian carcinoma stromal progenitor cells promotes tumorigenesis. J Transl Med 13:367

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liao S, Liu J, Lin P, Shi T, Jain RK, Xu L (2011) TGF-beta blockade controls ascites by preventing abnormalization of lymphatic vessels in orthotopic human ovarian carcinoma models. Clin Cancer Res 17(6):1415–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abendstein B, Stadlmann S, Knabbe C, Buck M, Müller-Holzner E, Zeimet AG, Marth C, Obrist P, Krugmann J, Offner FA (2000) Regulation of transforming growth factor-beta secretion by human peritoneal mesothelial and ovarian carcinoma cells. Cytokine 12(7):1115–1119

    Article  CAS  PubMed  Google Scholar 

  18. Parker WL, Finnson KW, Soe-Lin H, Knaus P, Philip A (2007) Expression and function of TbetaRII-B, a variant of the type II TGF-beta receptor, in human chondrocytes. Osteoarthr Cartil 15(4):442–453

    Article  CAS  PubMed  Google Scholar 

  19. Rotzer D, Roth M, Lutz M, Lindemann D, Sebald W, Knaus P (2001) Type III TGFbeta receptor-independent signalling of TGFbeta2 via TbetaRII-B, an alternatively spliced TGF beta type II receptor. EMBO J 20(3):480–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146(3):353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dunfield LD, Dwyer EJ, Nachtigal MW (2002) TGF beta-induced Smad signaling remains intact in primary human ovarian cancer cells. Endocrinology 143(4):1174–1181

    Article  CAS  PubMed  Google Scholar 

  22. Yamamura S, Matsumura N, Mandai M, Huang Z, Oura T, Baba T, Hamanishi J, Yamaguchi K, Kang HS, Okamoto T, Abiko K, Mori S, Murphy SK, Konishi I (2012) The activated transforming growth factor-beta signaling pathway in peritoneal metastases is a potential therapeutic target in ovarian cancer. Int J Cancer 130(1):20–28

    Article  CAS  PubMed  Google Scholar 

  23. Dennler S, Huet S, Gauthier JM (1999) A short amino-acid sequence in MH1 domain is responsible for functional differences between Smad2 and Smad3. Oncogene 18(8):1643–1648

    Article  CAS  PubMed  Google Scholar 

  24. Petersen M, Pardali E, van der Horst G, Cheung H, van den Hoogen C, van der Pluijm G, Ten Dijke P (2010) Smad2 and Smad3 have opposing roles in breast cancer bone metastasis by differentially affecting tumor angiogenesis. Oncogene 29(9):1351–1361

    Article  CAS  PubMed  Google Scholar 

  25. Yang J, Wahdan-Alaswad R, Danielpour D (2009) Critical role of Smad2 in tumor suppression and transforming growth factor-beta-induced apoptosis of prostate epithelial cells. Cancer Res 69(6):2185–2190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rodriguez GC, Haisley C, Hurteau J, Moser TL, Whitaker R, Bast RC Jr, Stack MS (2001) Regulation of invasion of epithelial ovarian cancer by transforming growth factor-beta. Gynecol Oncol 80(2):245–253

    Article  CAS  PubMed  Google Scholar 

  27. Cardenas H, Vieth E, Lee J, Segar M, Liu Y, Nephew KP, Matei D (2014) TGF-β induces global changes in DNA methylation during the epithelial-to-mesenchymal transition in ovarian cancer cells. Epigenetics 9(11):1461–1472

    Article  PubMed  PubMed Central  Google Scholar 

  28. Moustakas A, Heldin CH (2012) Induction of epithelial-mesenchymal transition by transforming growth factor β. Semin Cancer Biol 22(5–6):446–454

    Article  CAS  PubMed  Google Scholar 

  29. Katsuno Y, Lamouille S, Derynck R (2013) TGF-β signaling and epithelial-mesenchymal transition in cancer progression. Curr Opin Oncol 25(1):76–84

    Article  CAS  PubMed  Google Scholar 

  30. Zhu Y, Nilsson M, Sundfeldt K (2010) Phenotypic plasticity of the ovarian surface epithelium: TGF-beta 1 induction of epithelial to mesenchymal transition (EMT) in vitro. Endocrinology 151(11):5497–5505

    Article  CAS  PubMed  Google Scholar 

  31. Cheng JC, Auersperg N, Leung PC (2012) TGF-beta induces serous borderline ovarian tumor cell invasion by activating EMT but triggers apoptosis in low-grade serous ovarian carcinoma cells. PLoS One 7(8):e42436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lua I, Asahina K (2016) The role of mesothelial cells in liver development, injury, and regeneration. Gut Liver 10(2):166–176

    Article  PubMed  PubMed Central  Google Scholar 

  33. Do TV, Kubba LA, Du H, Sturgis CD, Woodruff TK (2008) Transforming growth factor-beta1, transforming growth factor-beta2, and transforming growth factor-beta3 enhance ovarian cancer metastatic potential by inducing a Smad3-dependent epithelial-to-mesenchymal transition. Mol Cancer Res 6(5):695–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Elloul S, Vaksman O, Stavnes HT, Trope CG, Davidson B, Reich R (2010) Mesenchymal-to-epithelial transition determinants as characteristics of ovarian carcinoma effusions. Clin Exp Metastasis 27(3):161–172

    Article  CAS  PubMed  Google Scholar 

  35. Sethi A, Mao W, Wordinger RJ, Clark AF (2011) Transforming growth factor-beta induces extracellular matrix protein cross-linking lysyl oxidase (LOX) genes in human trabecular meshwork cells. Invest Ophthalmol Vis Sci 52(8):5240–5250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim DJ, Lee DC, Yang SJ, Lee JJ, Bae EM, Kim DM, Min SH, Kim SJ, Kang DC, Sang BC, Myung PK, Park KC, Yeom YI (2008) Lysyl oxidase like 4, a novel target gene of TGF-beta1 signaling, can negatively regulate TGF-beta1-induced cell motility in PLC/PRF/5 hepatoma cells. Biochem Biophys Res Commun 373(4):521–527

    Article  CAS  PubMed  Google Scholar 

  37. Chandra M, Zang S, Li H, Zimmerman LJ, Champer J, Tsuyada A, Chow A, Zhou W, Yu Y, Gao H, Ren X, Lin RJ, Wang SE (2012) Nuclear translocation of type I transforming growth factor β receptor confers a novel function in RNA processing. Mol Cell Biol 32(12):2183–2195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lomnytska M, Lukiyanchuk V, Hellman U, Souchelnytskyi S (2004) Transforming growth factor-beta1-regulated proteins in human endothelial cells identified by two-dimensional gel electrophoresis and mass spectrometry. Proteomics 4(4):995–1006

    Article  CAS  PubMed  Google Scholar 

  39. Sebban S, Davidson B, Reich R (2009) Lysyl oxidase-like 4 is alternatively spliced in an anatomic site-specific manner in tumors involving the serosal cavities. Virchows Arch 454(1):71–79

    Article  CAS  PubMed  Google Scholar 

  40. Sebban S, Golan-Gerstl R, Karni R, Vaksman O, Davidson B, Reich R (2013) Alternatively spliced lysyl oxidase-like 4 isoforms have a pro-metastatic role in cancer. Clin Exp Metastasis 30(1):103–117

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the Inger and John Fredriksen Foundation for Ovarian Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ben Davidson or Reuven Reich.

Ethics declarations

Informed consent

Informed consent was obtained according to national and institutional guidelines. Study approval was given by the Regional Committee for Medical Research Ethics in Norway (S-04300).

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutgold, N., Davidson, B., Catane, L.J. et al. TGFβ splicing and canonical pathway activation in high-grade serous carcinoma. Virchows Arch 470, 665–678 (2017). https://doi.org/10.1007/s00428-017-2127-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-017-2127-x

Keywords

Navigation