Skip to main content
Log in

Counting is a spatial process: evidence from eye movements

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Spatial–numerical associations (small numbers—left/lower space and large numbers—right/upper space) are regularly found in simple number categorization tasks. These associations were taken as evidence for a spatially oriented mental number line. However, the role of spatial–numerical associations during more complex number processing, such as counting or mental arithmetic is less clear. Here, we investigated whether counting is associated with a movement along the mental number line. Participants counted aloud upward or downward in steps of 3 for 45 s while looking at a blank screen. Gaze position during upward counting shifted rightward and upward, while the pattern for downward counting was less clear. Our results, therefore, confirm the hypothesis of a movement along the mental number line for addition. We conclude that space is not only used to represent number magnitudes but also to actively operate on numbers in more complex tasks such as counting, and that the eyes reflect this spatial mental operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The algorithm checks the dispersion of consecutive data points in a moving window by summing the differences between the points’ maximum and minimum x and y values ([max(x) – min(x)] + [max(y) – min(y)]). If the sum is below 100 pixels, the window represents a fixation and expands until the sum exceeds 100 pixels. The final window is registered as fixation with a duration corresponding to the interval between the timestamps of the first and last included sample. The centroid of the included points determines the x and y coordinate of the fixation.

  2. Seven participants indeed performed their last few downward counting steps in the negative range (on average 4.2 counting steps, which cover approximately 15 % of their counting time). Counting downward in the negative range is similar to counting upwards and might potentially influence the hypothesized mental movement. However, visual inspection of the last part of the gaze path during downward counting for these seven participants showed no systematically different pattern when compared to the terminal gaze path of the other participants, and these cases were not treated differently. From the 11 participants who did not reach the negative range, only two had the number “2” as final counting result (which is the last number before reaching the negative range). These two participants reached “2” at the end of their counting time, as noted by the experimenter, suggesting that no participant stopped counting when reaching zero.

  3. For sum-coded predictors (addition = 1, subtraction = −1), two times the estimate (104 pixels) reflect the mean difference between upward and downward counting. Note that this value is slightly different from the value we reported above (111 pixels); this difference is mainly driven by the different averaging procedure (over 1-s time points).

  4. To validate the use of pupil size as indicator of cognitive effort, we first conducted another linear mixed model analysis with pupil size as fixed effect and participant as random intercept on response times, separately for addition and subtraction trials. Consistent with previous work (e.g., Kahneman et al., 1969; Nakayama et al., 2002), pupil size was a significant predictor of response times for both addition and subtraction trials (both ps < .001); response time increased with increasing pupil size, confirming that pupil size reliably reflects task difficulty.

  5. Even though the counting task still requires alternating between addition and subtraction trials (as in Anelli et al., 2014; Lugli et al., 2013), participants performed continuous additions and subtractions within one trial before they switched to the other operation.

References

  • Alibali, M. W., & DiRusso, A. A. (1999). The function of gesture in learning to count: more than keeping track. Cognitive Development, 14(1), 37–56.

    Article  Google Scholar 

  • Altmann, G. T. (2004). Language-mediated eye movements in the absence of a visual world: the ‘blank screen paradigm’. Cognition, 93(2), B79–B87. doi:10.1016/j.cognition.2004.02.005.

    Article  PubMed  Google Scholar 

  • Andin, J., Fransson, P., Rönnberg, J., & Rudner, M. (2015). Phonology and arithmetic in the language–calculation network. Brain and Language, 143, 97–105.

    Article  PubMed  Google Scholar 

  • Anelli, F., Lugli, L., Baroni, G., Borghi, A. M., & Nicoletti, R. (2014). Walking boosts your performance in making additions and subtractions. Frontiers in Psychology, 5, 1459.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashcraft, M. H. (1992). Cognitive arithmetic: a review of data and theory. Cognition, 44(1–2), 75–106.

    Article  PubMed  Google Scholar 

  • Ashcraft, M. H., & Battaglia, J. (1978). Cognitive arithmetic: evidence for retrieval and decision processes in mental addition. Journal of Experimental Psychology Human Learning and Memory, 4(5), 527.

    Article  Google Scholar 

  • Barrouillet, P., & Lépine, R. (2005). Working memory and children’s use of retrieval to solve addition problems. Journal of Experimental Child Psychology, 91(3), 183–204.

    Article  PubMed  Google Scholar 

  • Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617–645. doi:10.1146/annurev.psych.59.103006.093639.

    Article  PubMed  Google Scholar 

  • Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). lme4: linear mixed-effects models using Eigen and S4. R package version 1.1-8.

  • Binda, P., & Murray, S. O. (2015). Keeping a large-pupilled eye on high-level visual processing. Trends Cognitive Science, 19(1), 1–3. doi:10.1016/j.tics.2014.11.002.

    Article  Google Scholar 

  • Brandt, S. A., & Stark, L. W. (1997). Spontaneous eye movements during visual imagery reflect the content of the visual scene. Journal of Cognitive Neuroscience, 9(1), 27–38. doi:10.1162/jocn.1997.9.1.27.

    Article  PubMed  Google Scholar 

  • Butterworth, B., Zorzi, M., Girelli, L., & Jonckheere, A. R. (2001). Storage and retrieval of addition facts: the role of number comparison. The Quarterly Journal of Experimental Psychology Section A, 54(4), 1005–1029. doi:10.1080/713756007.

    Article  Google Scholar 

  • Campbell, J. I. D. (1994). Architectures for numerical cognition. Cognition, 53(1), 1–44. doi:10.1016/0010-0277(94)90075-2.

    Article  PubMed  Google Scholar 

  • Campbell, J. I. D. (2005). Handbook of mathematical cognition. New York: Psychology Press.

    Google Scholar 

  • Carlson, R. A., Ayraamides, M. N., Cary, M., & Strasberg, S. (2007). What do the hands externalize in simple arithmetic. Journal of Experimental Psychology Learning Memory and Cognition, 33, 747–756.

    Article  Google Scholar 

  • Casasanto, D., & Boroditsky, L. (2008). Time in the mind: using space to think about time. Cognition, 106(2), 579–593. doi:10.1016/j.cognition.2007.03.004.

    Article  PubMed  Google Scholar 

  • Cassia, V. M., McCrink, K., de Hevia, M. D., Gariboldi, V., & Bulf, H. (under review). Operational momentum and size ordering in preverbal infants. Psychological Research.

  • Corbetta, M., Akbudak, E., Conturo, T. E., Snyder, A. Z., Ollinger, J. M., Drury, H. A., et al. (1998). A common network of functional areas for attention and eye movements. Neuron, 21(4), 761–773.

    Article  PubMed  Google Scholar 

  • Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology General, 122(3), 371–396.

    Article  Google Scholar 

  • Ehrlichman, H., & Micic, D. (2012). Why do people move their eyes when they think? Current Directions in Psychological Science, 21(2), 96–100. doi:10.1177/0963721412436810.

    Article  Google Scholar 

  • Fias, W., & Fischer, M. H. (2005). Spatial representation of numbers. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 43–54). New York: Psychology Press.

    Google Scholar 

  • Fischer, M. H. (2008). Finger counting habits modulate spatial-numerical associations. Cortex, 44(4), 386–392.

    Article  PubMed  Google Scholar 

  • Fischer, M. H. (2012). A hierarchical view of grounded, embodied, and situated numerical cognition. Cognitive Processing, 13(1), 161–164.

    Article  Google Scholar 

  • Fischer, M. H., & Brugger, P. (2011). When digits help digits: spatial–numerical associations point to finger counting as prime example of embodied cognition. Frontiers in Psychology, 2.

  • Fischer, M. H., & Rottmann, J. (2005). Do negative numbers have a place on the mental number line. Psychology Science, 47(1), 22–32.

    Google Scholar 

  • Fischer, M. H., & Shaki, S. (2014a). Spatial associations in numerical cognition-from single digits to arithmetic. The Quarterly Journal of Experimental Psychology, 67(8), 1461–1483. doi:10.1080/17470218.2014.927515.

    Article  PubMed  Google Scholar 

  • Fischer, M. H., & Shaki, S. (2014b). Spatial biases in mental arithmetic. The Quarterly Journal of Experimental Psychology, 67(8), 1457–1460. doi:10.1080/17470218.2014.927516.

    Article  PubMed  Google Scholar 

  • Fischer, M. H., & Shaki, S. (2015). Measuring spatial-numerical associations: evidence for a purely conceptual link. Psychol Res. doi:10.1007/s00426-015-0646-0

  • Freyd, J. J., & Finke, R. A. (1984). Representational momentum. Journal of Experimental Psychology Learning Memory and Cognition, 10(1), 126.

    Article  Google Scholar 

  • Ganor-Stern, D., Pinhas, M., Kallai, A., & Tzelgov, J. (2010). Holistic representation of negative numbers is formed when needed for the task. The Quarterly Journal of Experimental Psychology, 63(10), 1969–1981.

    Article  PubMed  Google Scholar 

  • Gao, X., Yan, H., & Sun, H. (2015). Modulation of microsaccade rate by task difficulty revealed through between- and within-trial comparisons. Journal of Vision, 15(3), 1–15.

    Article  Google Scholar 

  • Gevers, W., Santens, S., Dhooge, E., Chen, Q., Bossche, L., Fias, W., et al. (2010). Verbal-spatial and visuospatial coding of number-space interactions. Journal of Experimental Psychology General, 139, 180–190.

    Article  PubMed  Google Scholar 

  • Göbel, S. M., Shaki, S., & Fischer, M. H. (2011). The cultural number line: a review of cultural and linguistic influences on the development of number processing. Journal of Cross Cultural Psychology, 42(4), 543–565.

    Article  Google Scholar 

  • Grade, S., Lefèvre, N., & Pesenti, M. (2012). Influence of gaze observation on random number generation. Experimental Psychology, 60, 122–130.

    Article  Google Scholar 

  • Grant, E. R., & Spivey, M. J. (2003). Eye movements and problem solving: guiding attention guides thought. Psychological Science, 14(5), 462–466.

    Article  PubMed  Google Scholar 

  • Groen, G. J., & Parkman, J. M. (1972). A chronometric analysis of simple addition. Psychological Review, 79(4), 329.

    Article  Google Scholar 

  • Gross, J., Hudson, C., & Price, D. (2009). The long term costs of numeracy difficulties. London: Every Child a Chance Trust and KPMG.

    Google Scholar 

  • Hartmann, M. (2015). Numbers in the eye of the beholder: what do eye movements reveal about numerical cognition? Cognitive Processing, 16(1), 245–248. doi:10.1007/s10339-015-0716-7.

    Article  PubMed  Google Scholar 

  • Hartmann, M., Farkas, R., & Mast, F. W. (2012a). Self-motion perception influences number processing: evidence from a parity task. Cognitive Processing, 13(1), 189–192. doi:10.1007/s10339-012-0484-6.

    Article  Google Scholar 

  • Hartmann, M., & Fischer, M. H. (2014). Pupillometry: the eyes shed fresh light on the mind. Current Biology, 24(7), R281–R282. doi:10.1016/j.cub.2014.02.028.

    Article  PubMed  Google Scholar 

  • Hartmann, M., Gashaj, V., Stahnke, A., & Mast, F. (2014a). There is more than “more is up”: hand and foot responses reverse the vertical association of number magnitudes. Journal of Experimental Psychology Human Perception and Performance, 40(4), 1401–1414. doi:10.1037/a0036686.

    Article  PubMed  Google Scholar 

  • Hartmann, M., Grabherr, L., & Mast, F. W. (2012b). Moving along the mental number line: interactions between whole-body motion and numerical cognition. Journal of Experimental Psychology Human Perception and Performance, 38(6), 1416–1427. doi:10.1037/a0026706.

    Article  PubMed  Google Scholar 

  • Hartmann, M., Martarelli, C., Mast, F. W. (2014b). Eye movements during mental time travel follow a diagonal line. Conscious Cogn, 30, 201–209.

    Article  PubMed  Google Scholar 

  • Hartmann, M., Mast, F. W., & Fischer, M. H. (2015). Spatial biases during mental arithmetic: evidence from eye movements on a blank screen. Frontiers in Psychology, 6, 12. doi:10.3389/fpsyg.2015.00012.

    Article  PubMed  PubMed Central  Google Scholar 

  • Holmes, K. J., & Lourenco, S. F. (2012). Orienting numbers in mental space: horizontal organization trumps vertical. The Quarterly Journal of Experimental Psychology, 65(6), 1044–1051. doi:10.1080/17470218.2012.685079.

    Article  PubMed  Google Scholar 

  • Hubbard, T. L. (2014). Forms of momentum across space: representational, operational, and attentional. Psychonomic Bulletin Review, 21(6), 1371–1403.

    Article  PubMed  Google Scholar 

  • Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Review Neuroscience, 6(6), 435–448.

    Article  Google Scholar 

  • Huette, S., Winter, B., Matlock, T., Ardell, D. H., & Spivey, M. (2014). Eye movements during listening reveal spontaneous grammatical processing. Frontiers in Psychology, 5, 410. doi:10.3389/fpsyg.2014.00410.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ito, Y., & Hatta, T. (2004). Spatial structure of quantitative representation of numbers: evidence from the SNARC effect. Memory Cognition, 32(4), 662–673.

    Article  PubMed  Google Scholar 

  • Johansson, R., Holsanova, J., & Holmqvist, K. (2006). Pictures and spoken descriptions elicit similar eye movements during mental imagery, both in light and in complete darkness. Cognitive Science, 30(6), 1053–1079. doi:10.1207/s15516709cog0000_86.

    Article  PubMed  Google Scholar 

  • Johansson, R., & Johansson, M. (2014). Look here, eye movements play a functional role in memory retrieval. Psychological Science, 25(1), 236–242. doi:10.1177/0956797613498260.

    Article  PubMed  Google Scholar 

  • Kahneman, D., & Beatty, J. (1966). Pupil diameter and load on memory. Science, 154, 3.

    Article  Google Scholar 

  • Kahneman, D., Tursky, B., Shapiro, D., & Crider, A. (1969). Pupillary, heart rate, and skin resistance changes during a mental task. Journal of Experimental Psychology, 79, 164–167.

    Article  PubMed  Google Scholar 

  • Kennedy, A. (1983). On looking into space. In K. Rayner (Ed.), Eye movements in reading: perceptual and language processes (pp. 237–251). New York: Academic Press.

  • Kinsbourne, M. (1972). Eye and head turning indicates cerebral lateralization. Science, 176(4034), 539–541.

    Article  PubMed  Google Scholar 

  • Knops, A., Dehaene, S., Berteletti, I., & Zorzi, M. (2014). Can approximate mental calculation account for operational momentum in addition and subtraction? The Quarterly Journal of Experimental Psychology (Hove), 67(8), 1541–1556. doi:10.1080/17470218.2014.890234.

    Article  Google Scholar 

  • Knops, A., Viarouge, A., & Dehaene, S. (2009). Dynamic representations underlying symbolic and nonsymbolic calculation: evidence from the operational momentum effect. Attention Perception Psychophysics, 71(4), 803–821. doi:10.3758/APP.71.4.803.

    Article  Google Scholar 

  • Knops, A., Zitzmann, S., & McCrink, K. (2013). Examining the presence and determinants of operational momentum in childhood. Frontiers in Psychology, 4, 325. doi:10.3389/fpsyg.2013.00325.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lakoff, G., & Johnson, M. (1980). Conceptual metaphor in everyday language. The Journal of Philosophy, 77(8), 453–486.

    Article  Google Scholar 

  • Lavie, N. (2005). Distracted and confused? Selective attention under load. Trends in Cognitive Science, 9(2), 75–82. doi:10.1016/j.tics.2004.12.004.

    Article  Google Scholar 

  • Lepsien, J., Griffin, I. C., Devlin, J. T., & Nobre, A. C. (2005). Directing spatial attention in mental representations: interactions between attentional orienting and working-memory load. Neuroimage, 26(3), 733–743. doi:10.1016/j.neuroimage.2005.02.026.

    Article  PubMed  Google Scholar 

  • Loetscher, T., Bockisch, C. J., Nicholls, M. E., & Brugger, P. (2010). Eye position predicts what number you have in mind. Current Biology, 20(6), R264–R265. doi:10.1016/j.cub.2010.01.015.

    Article  PubMed  Google Scholar 

  • Lugli, L., Baroni, G., Anelli, F., Borghi, A. M., & Nicoletti, R. (2013). Counting is easier while experiencing a congruent motion. PLoS One, 8(5), e64500.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marghetis, T., Nunez, R., & Bergen, B. K. (2014). Doing arithmetic by hand: hand movements during exact arithmetic reveal systematic, dynamic spatial processing. The Quarterly Journal of Experimental Psychology (Hove), 67(8), 1579–1596. doi:10.1080/17470218.2014.897359.

    Article  Google Scholar 

  • Martarelli, C. S., & Mast, F. W. (2011). Preschool children’s eye-movements during pictorial recall. British Journal of Developmental Psychology, 29(Pt 3), 425–436. doi:10.1348/026151010X495844.

    Article  PubMed  Google Scholar 

  • Masson, N., & Pesenti, M. (2014). Attentional bias induced by solving simple and complex addition and subtraction problems. The Quarterly Journal of Experimental Psychology (Hove), 67(8), 1514–1526. doi:10.1080/17470218.2014.903985.

    Article  Google Scholar 

  • McCrink, K., Dehaene, S., & Dehaene-Lambertz, G. (2007). Moving along the number line: operational momentum in nonsymbolic arithmetic. Perception and Psychophysics, 69(8), 1324–1333.

    Article  PubMed  Google Scholar 

  • Mock, J., Huber, S., Klein, E., Moeller, K. (under review). Insights into numerical cognition—considering eye-fixations in number processing and arithmetic. Psychological Research.

  • Myachykov, A., Cangelosi, A., Ellis, R., & Fischer, M. H. (2015a). The ocular resonance effect in spatial-numerical mapping. Acta Psychologica, 161, 162–169.

    Article  PubMed  Google Scholar 

  • Myachykov, A., Ellis, R., Changeolosi, A., & Fischer, M. H. (under review). Ocular drift along the mental number line. Psychological Research.

  • Nakayama, M., Takahashi, K., & Shimizu, Y. (2002). The act of task difficulty and eye-movement frequency for the ‘Oculo-motor indices’. In Proceedings of the 2002 symposium on Eye tracking research and applications (pp. 37–42): ACM

  • Parsons, S., & Bynner, J. (2005). Does numeracy matter more?. London: National Research and Development Centre for Adult Literacy and Numeracy.

    Google Scholar 

  • Pinhas, M., & Fischer, M. H. (2008). Mental movements without magnitude? A study of spatial biases in symbolic arithmetic. Cognition, 109(3), 408–415. doi:10.1016/j.cognition.2008.09.003.

    Article  PubMed  Google Scholar 

  • Pinhas, M., Shaki, S., & Fischer, M. H. (2014). Heed the signs: operation signs have spatial associations. The Quarterly Journal of Experimental Psychology (Hove), 67(8), 1527–1540. doi:10.1080/17470218.2014.892516.

    Article  Google Scholar 

  • R Core Team. (2014). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Ranzini, M., Lisi, M., Zorzi, M. (under review). Voluntary eye movements direct attention on the mental number space. Psychological Research.

  • Restle, F. (1970). Speed of adding and comparing numbers. Journal of Experimental Psychology, 83, 274.

    Article  Google Scholar 

  • Shaki, S., & Fischer, M. H. (2012). Multiple spatial mappings in numerical cognition. Journal of Experimental Psychology Human Perception and Performance, 38(3), 804.

    Article  PubMed  Google Scholar 

  • Shaki, S., & Fischer, M. H. (2014). Random walks on the mental number line. Experimental Brain Research, 232, 43–49.

    Article  PubMed  Google Scholar 

  • Shaki, S., Fischer, M. H., & Petrusic, W. M. (2009). Reading habits for both words and numbers contribute to the SNARC effect. Psychonomic Bulletin Review, 16(2), 328–331. doi:10.3758/PBR.16.2.328.

    Article  PubMed  Google Scholar 

  • Sheliga, B. M., Riggio, L., & Rizzolatti, G. (1994). Orienting of attention and eye movements. Experimental Brain Research, 98(3), 507–522.

    Article  PubMed  Google Scholar 

  • Siegenthaler, E., Costela, F. M., McCamy, M. B., Di Stasi, L. L., Otero-Millan, J., Sonderegger, A., et al. (2014). Task difficulty in mental arithmetic affects microsaccadic rates and magnitudes. European Journal of Neuroscience, 39, 287–294.

    Article  PubMed  Google Scholar 

  • Singmann, H., & Bolker, M. (2014). afex: analysis of factorial experiments. R package version 0.12–135

  • Spivey, M. J., & Geng, J. J. (2001). Oculomotor mechanisms activated by imagery and memory: eye movements to absent objects. Psychological Research, 65(4), 235–241.

    Article  PubMed  Google Scholar 

  • Stocker, K., Hartmann, M., Martarelli, C., & Mast, F. W. (2015). Eye movements reveal mental scanning through time. Cognitive Science, 1-23. doi:10.1111/cogs.12301

  • Tzelgov, J., Ganor-Stern, D., & Maymon-Schreiber, K. (2009). The representation of negative numbers: exploring the effects of mode of processing and notation. The Quarterly Journal of Experimental Psychology, 62(3), 605–624.

    Article  PubMed  Google Scholar 

  • Van Gompel, R. P. G., Fischer, M. H., Murray, W., & Hill, R. L. (2007). Eye movements: a window on mind and brain. Oxford: Elsevier.

    Google Scholar 

  • Varma, S., & Schwartz, D. L. (2011). The mental representation of integers: an abstract-to-concrete shift in the understanding of mathematical concepts. Cognition, 121, 363–385.

    Article  PubMed  Google Scholar 

  • Walsh, V. (2003). A theory of magnitude: common cortical metrics of time, space and quantity. Trends Cognitive Science, 7(11), 483–488.

    Article  Google Scholar 

  • Walsh, V. (2014). A theory of magnitude: the parts that sum to numbers. In R. C. Kadosh & A. Dowker (Eds.), The Oxford handbook of numerical cognition. Oxford: Oxford Universtiy Press.

    Google Scholar 

  • Wiemers, M., Bekkering, H., & Lindemann, O. (2014). Spatial interferences in mental arithmetic: evidence from the motion-arithmetic compatibility effect. The Quarterly Journal of Experimental Psychology, 67(8), 1557–1570. doi:10.1080/17470218.2014.889180.

    Article  PubMed  Google Scholar 

  • Winter, B. (2013). Linear models and linear mixed effects models in R with linguistic applications. arXiv:1308.5499. http://arxiv.org/pdf/1308.5499.pdf

  • Winter, B., Marghetis, T., & Matlock, T. (2015a). Of magnitudes and metaphors: explaining cognitive interactions between space, time, and number. Cortex, 64, 209–224.

    Article  PubMed  Google Scholar 

  • Winter, B., & Matlock, T. (2013). More is up … and right: random number generation along two axes. In M. Knauff, N. Pauen, N. Sebanz, & I. Wachsmuth (Eds.), Proceedings of the 35th Annual Conference of the Cognitive Science Society (pp. 3789–3794). Austin: Cognitive Science Society.

    Google Scholar 

  • Winter, B., Matlock, T., Shaki, S., & Fischer, M. H. (2015b). Mental number space in three dimensions. Neuroscience and Biobehavioral Reviews, 57, 209–219.

    Article  PubMed  Google Scholar 

  • Yu, X., Liu, J., Li, D., Cui, J., & Zhou, X. (under review). Dynamic mental number line in symple arithmetic. Psychological Research.

  • Zbrodoff, N. J., & Logan, G. D. (1990). On the relation between production and verification tasks in the psychology of simple arithmetic. Journal of Experimental Psychology Learning Memory and Cognition, 16(1), 83–97.

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Swiss National Science Foundation (P2BEP1_152104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Hartmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartmann, M., Mast, F.W. & Fischer, M.H. Counting is a spatial process: evidence from eye movements. Psychological Research 80, 399–409 (2016). https://doi.org/10.1007/s00426-015-0722-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-015-0722-5

Keywords

Navigation