Skip to main content
Log in

Working memory training improves visual short-term memory capacity

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Since antiquity, philosophers, theologians, and scientists have been interested in human memory. However, researchers today are still working to understand the capabilities, boundaries, and architecture. While the storage capabilities of long-term memory are seemingly unlimited (Bahrick, J Exp Psychol 113:1–2, 1984), working memory, or the ability to maintain and manipulate information held in memory, seems to have stringent capacity limits (e.g., Cowan, Behav Brain Sci 24:87–185, 2001). Individual differences, however, do exist and these differences can often predict performance on a wide variety of tasks (cf. Engle What is working-memory capacity? 297–314, 2001). Recently, researchers have promoted the enticing possibility that simple behavioral training can expand the limits of working memory which indeed may also lead to improvements on other cognitive processes as well (cf. Morrison and Chein, Psychol Bull Rev 18:46–60 2011). However, initial investigations across a wide variety of cognitive functions have produced mixed results regarding the transferability of training-related improvements. Across two experiments, the present research focuses on the benefit of working memory training on visual short-term memory capacity—a cognitive process that has received little attention in the training literature. Data reveal training-related improvement of global measures of visual short-term memory as well as of measures of the independent sub-processes that contribute to capacity (Awh et al., Psychol Sci 18(7):622–628, 2007). These results suggest that the ability to inhibit irrelevant information within and between trials is enhanced via n-back training allowing for selective improvement on untrained tasks. Additionally, we highlight a potential limitation of the standard adaptive training procedure and propose a modified design to ensure variability in the training environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Furthermore, to preview the results of Experiment 2, if our conclusions are correct and it is improved attentional control (and more specifically, improved inhibition) driving improvement in many of our transfer measures, then these tests are not independent and Bonferroni correction is not appropriate (McDonald, 2008).

References

  • Adams, J. A. (1987). Historical review and appraisal of research on the learning, retention, and transfer of human motor skills. Psychological Bulletin, 101(1), 41–74. doi:10.1037/0033-2909.101.1.41.

    Article  Google Scholar 

  • Arend, A. M., & Zimmer, H. D. (2012). Successful training of filtering mechanisms in multiple object tracking does not transfer to filtering mechanisms in a visual working memory task: behavioral and electrophysiological evidence. Neuropsychologia, 50(10), 2379–2388. doi:10.1016/j.neuropsychologia.2012.16.007.

    Article  PubMed  Google Scholar 

  • Awh, E., Barton, B., & Vogel, E. K. (2007). Visual working memory represents a fixed number of items regardless of complexity. Psychological Science, 18(7), 622–628. doi:10.1111/j.1467-9280.2007.01949.x.

    Article  PubMed  Google Scholar 

  • Bahrick, H. P. (1984). Semantic memory content in permastore: fifty years of memory for spanish learned in school. Journal of Experimental Psychology: General, 113(1), 1–29.

    Article  Google Scholar 

  • Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what we learn? A taxonomy for far transfer. Psychological Bulletin, 128(4), 612–637. doi:10.1037//0033-2909.128.4.612.

    Article  PubMed  Google Scholar 

  • Bartlett, F. C. (1947). The measurement of human skill. British Medical Journal, 1(4511), 877–880.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boot, W. R., Kramer, A. F., Simons, D. J., Fabiani, M., & Gratton, G. (2008). The effects of video game playing on attention, memory, and executive control. Acta Psychologica, 129(3), 387–398. doi:10.1016/j.actpsy.2008.09.005.

    Article  PubMed  Google Scholar 

  • Brehmer, Y., Westerberg, H., & Bäckman, L. (2012). Working-memory training in younger and older adults: training gains, transfer, and maintenance. Frontiers in Human Neuroscience,. doi:10.3389/fnhum.2012.00063.

    Google Scholar 

  • Broadbent, D. E. (1958). Perception and communication. New York: Pergamon Press.

    Book  Google Scholar 

  • Buschkuehl, M., Jaeggi, S. M., & Jonides, J. (2012). Neuronal effects following working memory training. Developmental Psychology, 2, S167–S179. doi:10.1016/j.dcn.2011.10.001.

    Google Scholar 

  • Cattell, R. B. (1949). Culture free intelligence test, scale 1, Handbook. Champaign: Institute of Personality and Ability.

    Google Scholar 

  • Chein, J. M., & Morrison, A. B. (2010). Expanding the mind’s workspace: training and transfer effects within a complex working memory span task. Psychonomic Bulletin & Review, 17(2), 193–199. doi:10.3758/PBR.17.2.193.

    Article  Google Scholar 

  • Colom, R., Quiroga, M. A., Shih, P. C., Martinez, K., Burgaleta, M., Martinez-Molina, A., et al. (2010). Improvement in working memory is not related to increased intelligence scores. Intelligence, 38, 497–505. doi:10.1016/j.intell.2010.08.002.

    Article  Google Scholar 

  • Conway, A. R. A., Cowan, N., & Bunting, M. F. (2001). The cocktail party phenomenon revisited: the importance of working memory capacity. Psychonomic Bulletin & Review, 8(2), 331–335. doi:10.3758/BF03196169.

    Article  Google Scholar 

  • Cowan, N. (2001). The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87–185.

    Article  PubMed  Google Scholar 

  • Curby, K. M., & Gauthier, I. (2007). A visual short-term memory advantage for faces. Psychonomic Bulletin & Review, 12, 1127–1133. doi:10.3758/BF03196811.

    Google Scholar 

  • Dahlin, E., Neely, A. S., Larsson, A., Backman, L., & Nyberg, L. (2008a). Transfer of learning after updating training mediated by the striatum. Science, 320, 1510–1512. doi:10.1126/science.1155466.

    Article  PubMed  Google Scholar 

  • Dahlin, E., Nyberg, L., Backman, L., & Neely, A. S. (2008b). Plasticity of executive functioning in young and older adults: immediate training gains, transfer, and long-term maintenance. Psychology and Aging, 23(4), 720–730. doi:10.1037/a0014296.

    Article  PubMed  Google Scholar 

  • Dempster, F. N. (1988). The spacing effect: a case study in the failure to apply the results of psychological research. American Psychologist, 43(8), 627–634. doi:10.1037//0003-066X.43.8.627.

    Article  Google Scholar 

  • Ebbinghaus, H. E. (1885/1913). Memory: A contribution to experimental psychology. New York: Dover.

  • Engle, R. W. (2001). What is working-memory capacity? In H. L. Roediger & J. S. Nairne (Eds.), Nature of Remembering: Essays in Honor of Robert G. Crowder (pp. 297–314). Washington: American Psychological Association.

    Chapter  Google Scholar 

  • Engle, R. W., Kane, M. J., & Tuholski, S. W. (1999). Individual differences in working memory capacity and what they tell us about controlled attention, general fluid intelligence, and functions of the prefrontal cortex. In A. Miyake & P. Shah (Eds.), Models of working memory: mechanisms of active maintenance and executive control (pp. 102–134). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception and Psychophysics, 16(1), 143–149. doi:10.3758/BF03203267.

    Article  Google Scholar 

  • Fukuda, K., & Vogel, E. K. (2009). Human variation in overriding attentional capture. Journal of Neuroscience, 29(27), 8726–8733. doi:10.1523/JNEUROSCI.2145-09.2009.

    Article  PubMed  Google Scholar 

  • Fukuda, K., & Vogel, E. K. (2011). Individual differences in recovery time from attentional capture. Psychological Science, 22(3), 361–368. doi:10.1177/0956797611398493.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fukuda, K., Vogel, E. K., Mayr, U., & Awh, E. (2010). Quantity not quality: the relationship between fluid intelligence and working memory capacity. Psychonomic Bulletin & Review, 17(5), 673–679. doi:10.3758/17.5.673.

    Article  Google Scholar 

  • Gaspar, J. G., Neider, M. B., Simons, D. S., McCarley, J. S., & Kramer, A. F. (2013). Change detection: training and transfer. PLoS One, 8(6), e67781. doi:10.1371/journal.pone.0067781.

    Article  PubMed  PubMed Central  Google Scholar 

  • Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423, 534–537. doi:10.1038/nature01647.

    Article  PubMed  Google Scholar 

  • Green, C. S., & Bavelier, D. (2006). Effect of action video games on the spatial distribution of visual attention. Journal of Experimental Psychology: Human Learning and Memory, 32(6), 1465–1478. doi:10.1037/0096-1523.32.6.1465.

    Google Scholar 

  • Heitz, R. P., & Engle, R. W. (2007). Focusing the spotlight: individual differences in visual attention control. Journal of Experimental Psychology: General, 136(2), 217–240. doi:10.1037/0096-3445.136.2.217.

    Article  Google Scholar 

  • Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences, 105(19), 6829–6833. doi:10.1073/pnas.0801268105.

    Article  Google Scholar 

  • Jaeggi, S. M., Buschkuehl, M., Perrig, W. J., & Meier, B. (2010a). The concurrent validity of the n-back task as a working memory meausre. Memory, 18(4), 394–412.

    Article  PubMed  Google Scholar 

  • Jaeggi, S. M., Studer-Luethi, B., Buschkuehl, M., Su, Y.-F., Jonides, J., & Perrig, W. J. (2010b). The relationship between n-back performance and matrix reasoning—implications for training and transfer. Intelligence, 38(6), 625–635. doi:10.1016/j.intell.2010.09.001.

    Article  Google Scholar 

  • Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Shah, P. (2011). Short- and long-term benefits of cognitive training. Proceedings of the National Academy of Sciences, 108(25), 11081–11086. doi:10.1073/pnas.1103228108.

    Article  Google Scholar 

  • Jaušovec, N., & Jaušovec, K. (2012). Working memory training: improving intelligence—Changing brain activity. Brain and Cognition, 79, 96–106. doi:10.1016/j.bandc.2012.02.007.

    Article  PubMed  Google Scholar 

  • Jonides, J., Schumacher, E. H., Smith, E. E., Lauber, E. J., Awh, E., Minoshima, S., & Koeppe, R. A. (1997). Verbal working memory load affects regional brain activation as measured by PET. Journal of Cognitive Neuroscience, 9(4), 462–475.

    Article  PubMed  Google Scholar 

  • Kane, M. J., Brown, L. H., McVay, J. C., Silvia, P. J., Myin-Germeys, I., & Kwapil, T. R. (2007a). For whom the mind wanders, and when: an experience-sampling study of working memory and executive control in daily life. Psychological Science, 18, 614–621. doi:10.1111/j.1467-9280.2007.01948.x.

    Article  PubMed  Google Scholar 

  • Kane, M. J., Conway, A. R. A., Miura, T. K., & Colflesh, G. J. H. (2007b). Working memory, attention control, and the n-back task: a question of construct validity. Journal of Experimental Psychology. Learning, Memory, and Cognition, 33(3), 615–622. doi:10.1037/0278-7393.33.3.615.

    Article  PubMed  Google Scholar 

  • Kane, M. J., & Engle, R. W. (2003). Working-memory capacity and the control of attention: the contributions of goal neglect, response competition, and task set to Stroop interference. Journal of Experimental Psychology: General, 132(1), 47–70. doi:10.1037/0096-3445.132.1.47.

    Article  Google Scholar 

  • Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. W. (2004). The domain generality of working-memory capacity: a latent-variable approach to verbal and spatial memory span and reasoning. Journal of Experimental Psychology: General, 133, 189–217. doi:10.1037/0096-3445.133.2.189.

    Article  Google Scholar 

  • Kerr, R., & Booth, B. (1978). Specific and varied practice of motor skill. Perceptual and Motor Skills, 46(2), 395–401.

    PubMed  Google Scholar 

  • Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Increased brain activity in frontal and parietal cortex underlies the development of visuospatial working memory capacity during childhood. Journal of Cognitive Neuroscience, 14(1), 1–10. doi:10.1162/089892902317205276.

    Article  PubMed  Google Scholar 

  • Kundu, B., Sutterer, D. W., Emrich, S. M., & Postle, B. R. (2013). Strengthened effective connectivity underlies transfer of working memory training to tests of short-term memory and attention. The Journal of Neuroscience, 33(20), 8705–8715. doi:10.1523/JNEUROSCI.5565-12.2013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, S. C., Schmiedek, F., Huxhold, O., Rocke, C., Smith, J., & Lindenberger, U. (2008). Working memory plasticity in old age: practice gain, transfer, and maintenance. Psychology and Aging, 23(4), 731–742. doi:10.1037/a0014343.

    Article  PubMed  Google Scholar 

  • Lilienthal, L., Tamez, E., Shelton, J. T., Myerson, J., & Hale, S. (2013). Dual n-back training increases the capacity of the focus of attention. Psychonomic Bulletin & Review, 20, 135–141. doi:10.3758/s12423-012-0335-6.

    Article  Google Scholar 

  • McDonald, J. H. (2008). Biological Statistics. Baltimore: Sparky House Publishing.

    Google Scholar 

  • McElree, B. (2001). Working memory and focal attention. Journal of Experimental Psychology. Learning, Memory, and Cognition, 27, 817–835. doi:10.1037//0278-7393.27.3.817.

    Article  PubMed  PubMed Central  Google Scholar 

  • Melby-Lervåg, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49(2), 270–291. doi:10.1037/a0028228.

    PubMed  Google Scholar 

  • Morrison, A. B., & Chein, J. M. (2011). Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychological Bulletin & Review, 18, 46–60. doi:10.3758/s13423-010-0034-0.

    Article  Google Scholar 

  • Morrison, A. B., & Chein, J. M. (2012). The controversy over Cogmed. Journal of Applied Research in Memory and Cognition, 1(3), 208–210. doi:10.1016/j.jarmac.2012.07.005.

    Article  Google Scholar 

  • Motulsky, H. (2010). Multiple comparisons concepts. In Intuitive Biostatistics: A Nonmathematical Guide to Statistical Thinking (Vol. 2, pp. 157–168). New York: Oxford University Press, Inc.

  • Neill, W., Valdes, L., & Terry, K. (1994). Selective attention and the inhibitory control of cognition. In F. N. Dempster & C. Brainerd (Eds.), New perspectives on interference and inhibition in cognition. New York: Academic Press.

    Google Scholar 

  • O’Donnell, R. D., Moise, S., & Schmidt, R. M. (2005). Generating performance test batteries relevant to specific operational tasks. Aviation, Space and Environmental Medicine, 76(7), C24–C30.

    Google Scholar 

  • Olesen, P. J., Westerberg, H., & Klingberg, T. (2004). Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience, 7(1), 75–79. doi:10.1038/nn1165.

    Article  PubMed  Google Scholar 

  • Owen, A. M., Hampshire, A., Grahn, J. A., Stenton, R., Dajani, S., Burns, A. S., et al. (2010). Putting brain training to the test. Nature, 465(7299), 775–779. doi:10.1038/nature09042.

    Article  PubMed  PubMed Central  Google Scholar 

  • Owens, M., Koster, E. H. W., & Derakshan, N. (2013). Improving attentional control in dysphoria through cognitive training: transfer effects on working memory capacity and filtering efficiency. Psychophysiology, 50(3), 297–307. doi:10.1111/psyp.12010.

    Article  PubMed  Google Scholar 

  • Pashler, H., Rohrer, D., Cepeda, N. J., & Carpenter, S. K. (2007). Enhancing learning and retarding forgetting: choices and consequences. Psychonomic Bulletin & Review, 14(2), 187–193. doi:10.3758/BF03194050.

    Article  Google Scholar 

  • Redick, T. S., Shipstead, Z., Harrison, T. L., Hicks, K. L., Fried, D. E., Hambrick, D. Z., et al. (2012). No evidence of intelligence improvement after working memory training: a randomized, placebo-controlled study. Journal of Experimental Psychology: General, 142(2), 359–379. doi:10.1037/a0029082.

    Article  Google Scholar 

  • Rogers, W. A. (1996). Assessing age-related differences in the long-term retention of skills. In W. A. Rogers, A. D. Fisk, & N. Walker (Eds.), Aging and skilled performance: Advances in theory and application (pp. 185–200). Hillsdale: Erlbaum.

    Google Scholar 

  • Rudebeck, S. R., Bor, D., Ormond, A., O’Reilly, J. X., & Lee, A. C. H. (2012). A potential spatial working memory training task to improve both episodic memory and fluid intelligence. PLoS One, 7(11), e50431. doi:10.1371/journal.pone.0050431.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt, R. A., & Bjork, R. A. (1992). New conceptualizations of practice: paradigms suggest new concepts for training. Psychological Science, 3(4), 207–217. doi:10.1111/j.1467-9280.1992.tb00029.x.

    Article  Google Scholar 

  • Schmiedek, F., Lövdén, M., & Lindenberger, U. (2010). Hundred days of cognitive training enhance broad cognitive abilities in adulthood: findings from the COGITO study Frontiers in Aging. Neuroscience, 2(27), 1–10. doi:10.3389/fnagi.2010.00027.

    Google Scholar 

  • Schneider, W., & Chen, J. M. (2003). Controlled and automatic processing: behavior, theory, and biological mechanisms. Cognitive Science, 27, 525–559.

    Article  Google Scholar 

  • Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime User’s Guide. Pittsburgh: Psychology Software Tools Inc.

    Google Scholar 

  • Schneiders, J. A., Opitz, B., Krick, C. M., & Mecklinger, A. (2011). Separating intra-modal and across-modal training effects in visual working memory: an fMRI investigation. Cerebral Cortex, 21(11), 2555–2564. doi:10.1093/cercor/bhr037.

    Article  PubMed  Google Scholar 

  • Schneiders, J. A., Opitz, B., Tang, H., Deng, Y., Xie, C. X., Li, H., et al. (2012). The impact of auditory working memory training on the fronto-parietal working memory network. Frontiers in Human Neuroscience, 6, 173. doi:10.3389/fnhum.2012.00173.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scolari, M., Vogel, E. K., & Awh, E. (2008). Perceptual expertise enhances the resolution but not the number of representations in working memory. Psychonomic Bulletin & Review, 15(1), 215–222. doi:10.3758/pbr.15.1.215.

    Article  Google Scholar 

  • Shea, J. B., & Morgan, R. L. (1979). Contextual interference effects on the acquisition, retention, and transfer of a motor skill. Journal of Experimental Psychology: Human Learning and Memory, 5(2), 179–187. doi:10.1037//0278-7393.5.2.179.

    Google Scholar 

  • Shipstead, Z., Redick, T. S., & Engle, R. W. (2010). Does working memory training generalize? Psychologica Belgica, 50, 245–276.

    Article  Google Scholar 

  • Thorell, L. B., Lindqvist, S., Nutley, S. B., & Klingberg, T. (2009). Training and transfer effects of executive functions in preschool children. Developmental Science, 12(1), 106–113. doi:10.1111/j.1467-7687.2008.00745.x.

    Article  PubMed  Google Scholar 

  • Turner, M. L., & Engle, R. W. (1989). Is working memory capacity task dependent? Journal of Memory and Language, 28, 127–154. doi:10.1016/0749-596X(89)90040-5.

    Article  Google Scholar 

  • Unsworth, N., Heitz, R. P., Schrock, J. C., & Engle, R. W. (2005). An automated version of the operation span task. [Research Support, U.S. Gov’t, Non-P.H.S.]. Behavior Research Methods, 37(3), 498–505. doi:10.3758/BF03192720.

    Article  PubMed  Google Scholar 

  • Unsworth, N., Schrock, J. C., & Engle, R. W. (2004). Working memory capacity and the antisaccade task: individual differences in voluntary saccade control. Journal of Experimental Psychology. Learning, Memory, and Cognition, 30(6), 1302–1321. doi:10.1037/0278-7393.30.6.1302.

    Article  PubMed  Google Scholar 

  • Unsworth, N., & Spillers, G. J. (2010). Working memory capacity: attention control, secondary memory, or both? A direct test of the dual-component model. Journal of Memory and Language, 62, 392–406. doi:10.1016/j.jml.2010.02.001.

    Article  Google Scholar 

  • Verhaeghen, P., Cerella, J., & Basak, C. (2004). A working memory workout: how to expand the focus of serial attention from one to four items in 10 hours or less. Journal of Experimental Psychology. Learning, Memory, and Cognition, 10(6), 1322–1337. doi:10.1037/0278-7393.30.6.1322.

    Article  Google Scholar 

  • Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500–503. doi:10.1038/nature04171.

    Article  PubMed  Google Scholar 

  • Westerberg, H., & Klingberg, T. (2007). Changes in cortical activity after training of working memory—a single-subject analysis. Physiology & Behavior, 92, 186–192. doi:10.1016/j.physbeh.2007.05.041.

    Article  Google Scholar 

  • Willis, S. L., Tennstedt, S. L., Marsiske, M., Ball, K., Elias, J., Koepke, K. M., et al. (2006). Long-term effects of cognitive training on everyday functional outcomes in older adults. Journal of the American Medical Association, 296(23), 2805–2814. doi:10.1001/jama.296.23.2805.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(7192), 233–235. doi:10.1038/nature06860.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, W., & Luck, S. J. (2009). Sudden death and gradual decay in visual working memory. Psychological Science,. doi:10.1111/j.1467-9280.2009.02322.x.

    PubMed Central  Google Scholar 

  • Zhang, W., & Luck, S. J. (2011). The number and quality of representations in working memory. Psychological Science, 22(11), 1434–1441. doi:10.1177/0956797611417006.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zimmer, H. D., Popp, C., Reith, W., & Krick, C. M. (2012). Gains of item-specific training in visual working memory and their neural correlates. Brain Research, 1466, 44–55. doi:10.1016/j.brainres.2012.05.019.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded in part by a grant to the author from the Air Force Offices of Scientific Research (Award No. FA9550-09-1-0162); in part by a grant from the American Psychological Association; and in part by a graduate research award from the Georgia Institute of Technology School of Psychology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hillary Schwarb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwarb, H., Nail, J. & Schumacher, E.H. Working memory training improves visual short-term memory capacity. Psychological Research 80, 128–148 (2016). https://doi.org/10.1007/s00426-015-0648-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-015-0648-y

Keywords

Navigation