Skip to main content
Log in

Auditory attentional capture: implicit and explicit approaches

  • Review
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

The extent to which distracting items capture attention despite being irrelevant to the task at hand can be measured either implicitly or explicitly (e.g., Simons, Trends Cogn Sci 4:147–155, 2000). Implicit approaches include the standard attentional capture paradigm in which distraction is measured in terms of reaction time and/or accuracy costs within a focal task in the presence (vs. absence) of a task-irrelevant distractor. Explicit measures include the inattention paradigm in which people are asked directly about their noticing of an unexpected task-irrelevant item. Although the processes of attentional capture have been studied extensively using both approaches in the visual domain, there is much less research on similar processes as they may operate within audition, and the research that does exist in the auditory domain has tended to focus exclusively on either an explicit or an implicit approach. This paper provides an overview of recent research on auditory attentional capture, integrating the key conclusions that may be drawn from both methodological approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alho, K., Woods, D. L., Algazi, A., & Näätänen, R. (1992). Intermodal selective attention. II. Effects of attentional load on processing of auditory and visual stimuli in central space. Electroencephalography and Clinical Neurophysiology, 82, 356–368.

    Article  PubMed  Google Scholar 

  • Bregman, A. S. (1990). Auditory scene analysis. Cambridge: MIT Press.

    Google Scholar 

  • Dalton, P., & Fraenkel, N. (2012). Gorillas we have missed: sustained inattentional deafness for dynamic events. Cognition, 124, 367–372.

    Article  PubMed  Google Scholar 

  • Dalton, P., & Lavie, N. (2004). Auditory attentional capture: effects of singleton distractor sounds. Journal of Experimental Psychology: Human Perception and Performance, 30, 180–193.

    PubMed  Google Scholar 

  • Dalton, P., & Lavie, N. (2007). Overriding auditory attentional capture. Perception and Psychophysics, 69, 162–171.

    Article  PubMed  Google Scholar 

  • Dehais, F., Causse, M., Vachon, F., Régis, N., Menant, E., & Tremblay, S. (2013). Failure to detect critical auditory alerts in the cockpit: evidence for inattentional deafness. Human Factors: The Journal of the Human Factors and Ergonomics Society. doi:10.1177/0018720813510735 (epub ahead of print).

  • Escera, C., Alho, K., Schröger, E., & Winkler, I. (2000). Involuntary attention and distractibility as evaluated with event-related brain potentials. Audiology and Neuro-Otology, 5, 151–166.

    Article  PubMed  Google Scholar 

  • Escera, C., Alho, K., Winkler, I., & Näätänen, R. (1998). Neural mechanisms of involuntary attention to acoustic novelty and change. Journal of Cognitive Neuroscience, 10, 590–604.

    Article  PubMed  Google Scholar 

  • Gomes, H., Barrett, S., Duff, M., Barnhardt, J., & Ritter, W. (2008). The effects of interstimulus interval on event-related indices of attention: an auditory selective attention test of perceptual load theory. Clinical Neurophysiology, 119, 542–555.

    Article  PubMed  Google Scholar 

  • Hackley, S. A. (2009). The speeding of voluntary reaction by a warning signal. Psychophysiology, 46, 225–233.

    Article  PubMed  Google Scholar 

  • Harmony, T., Bernal, J., Fernández, T., Silva-Pereyra, J., Fernández-Bouzas, A., Marosi, E., et al. (2000). Primary task demands modulate P3a amplitude. Cognitive Brain Research, 9, 53–60.

    Article  PubMed  Google Scholar 

  • Horváth, J., Sussman, E., Winkler, I., & Schröger, E. (2011). Preventing distraction: assessing stimulus-specific and general effects of the predictive cueing of deviant auditory events. Biological Psychology, 87, 35–48.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hughes, R. W. (2014). Auditory distraction: a duplex-mechanism account. PsyCh Journal, 3, 30–41.

    Google Scholar 

  • Hughes, R. W., Hurlstone, M. J., Marsh, J. E., Vachon, F., & Jones, D. M. (2013). Cognitive control of auditory distraction: impact of task difficulty, foreknowledge, and working memory capacity supports duplex-mechanism account. Journal of Experimental Psychology: Human Perception and Performance, 39, 539–553.

    PubMed  Google Scholar 

  • Hughes, R. W., Vachon, F., & Jones, D. M. (2005). Auditory attentional capture during serial recall: violations at encoding of an algorithm-based neural model? Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 736–749.

    PubMed  Google Scholar 

  • Hughes, R. W., Vachon, F., & Jones, D. M. (2007). Disruption of short-term memory by changing and deviant sounds: support for a duplex-mechanism account of auditory distraction. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33, 1050–1061.

    PubMed  Google Scholar 

  • Jones, D. M., & Macken, W. J. (1993). Irrelevant tones produce an irrelevant speech effect: implications for phonological coding in working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 369–381.

    Google Scholar 

  • Klapp, S. T., Marshburn, E. A., & Lester, P. T. (1983). Short-term memory does not involve working memory of information processing: the demise of a common assumption. Journal of Experimental Psychology. General, 112, 240–264.

    Article  Google Scholar 

  • Koreimann S., Strauß, S., & Vitouch, O. (2009). Inattentional deafness under dynamic musical conditions. In: Proceedings of the 7th triennial conference of European society for the cognitive sciences of music (pp. 246–249). Jyväskylä: ESCOM.

  • Lange, E. B. (2005). Disruption of attention by irrelevant stimuli in serial recall. Journal of Memory and Language, 53, 513–531.

    Article  Google Scholar 

  • Li, B., Parmentier, F. B. R., & Zhang, M. (2013). Behavioral distraction by auditory deviance is mediated by the sound’s informational value: evidence from an auditory discrimination task. Experimental Psychology, 60, 260–268.

    Article  Google Scholar 

  • Macdonald, J. S., & Lavie, N. (2011). Visual perceptual load induces inattentional deafness. Attention, Perception, and Psychophysics, 73, 1780–1789.

    Article  Google Scholar 

  • Mack, A., & Rock, I. (1998). Inattentional blindness. Cambridge: The MIT Press.

    Google Scholar 

  • Marsh, J. E., Hughes, R. W., & Jones, D. M. (2008). Auditory distraction in semantic memory: a process-based approach. Journal of Memory and Language, 58, 682–700.

    Article  Google Scholar 

  • Marsh, J. E., Hughes, R. W., & Jones, D. M. (2009). Interference by process, not content, determines semantic auditory distraction. Cognition, 110, 23–38.

    Article  PubMed  Google Scholar 

  • Most, S. B., Scholl, B. J., Clifford, E. R., & Simons, D. J. (2005). What you see is what you set: sustained inattentional blindness and the capture of awareness. Psychological Review, 112, 217–242.

    Article  PubMed  Google Scholar 

  • Muller-Gass, A., Macdonald, M., Schröger, E., Sculthorpe, L., & Campbell, K. (2007). Evidence for the auditory P3a reflecting an automatic process: elicitation during highly-focused continuous visual attention. Brain Research, 1170, 71–78.

    Article  PubMed  Google Scholar 

  • Muller-Gass, A., Stelmack, R. M., & Campbell, K. B. (2006). The effect of visual task difficulty and attentional direction on the detection of acoustic change as indexed by the mismatch negativity. Brain Research, 1078, 112–130.

    Article  PubMed  Google Scholar 

  • Murphy, S., Fraenkel, N., & Dalton, P. (2013). Perceptual load does not modulate auditory distractor processing. Cognition, 129, 345–355.

    Article  PubMed  Google Scholar 

  • Näätänen, R. (1990). The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behavioral and Brain Sciences, 13, 201–288.

    Article  Google Scholar 

  • Nöstl, A., Marsh, J. E., & Sörqvist, P. (2012). Expectations modulate the magnitude of attentional capture by auditory events. PLoS One, 7(11), e48569.

    Article  PubMed Central  PubMed  Google Scholar 

  • Parmentier, F.B.R. (2014). The cognitive determinants of behavioral distraction by deviant auditory stimuli: a review. Psychological Research (in press).

  • Parmentier, F. B. R., Elford, G., Escera, C., Andrés, P., & San Miguel, I. (2008). The cognitive locus of distraction by acoustic novelty in the cross-modal oddball task. Cognition, 106, 408–432.

    Article  PubMed  Google Scholar 

  • Parmentier, F. B. R., Elsley, J. V., Andrés, P., & Barceló, F. (2011). Why are auditory novels distracting? Contrasting the roles of novelty, violation of expectation and stimulus change. Cognition, 119, 374–380.

    Article  PubMed  Google Scholar 

  • Parmentier, F. B. R., Elsley, J. V., & Ljungberg, J. K. (2010). Behavioral distraction by auditory novelty is not only about novelty: the role of the distracter’s informational value. Cognition, 115, 504–511.

    Article  PubMed  Google Scholar 

  • Parmentier, F. B. R., & Hebrero, M. (2013). Cognitive control of involuntary distraction by deviant sounds. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39, 1635–1641.

    PubMed  Google Scholar 

  • Schröger, E. (1996). A neural mechanism for involuntary attention shifts to changes in auditory stimulation. Journal of Cognitive Neuroscience, 8, 527–539.

    Article  PubMed  Google Scholar 

  • Schröger, E., & Wolff, C. (1998). Behavioral and electrophysiological effects of task-irrelevant sound change: a new distraction paradigm. Cognitive Brain Research, 7, 71–87.

    Article  PubMed  Google Scholar 

  • Shelton, J. T., Elliott, E. M., Eaves, S. D., & Exner, A. L. (2009). The distracting effects of a ringing cell phone: an investigation of the laboratory and the classroom setting. Journal of Environmental Psychology, 29, 513–521.

    Article  PubMed Central  PubMed  Google Scholar 

  • Shinn-Cunningham, B. (2008). Object-based auditory and visual attention. Trends in Cognitive Sciences, 12, 182–186.

    Article  PubMed Central  PubMed  Google Scholar 

  • Simons, D. J. (2000). Attentional capture and inattentional blindness. Trends in Cognitive Sciences, 4, 147–155.

    Article  PubMed  Google Scholar 

  • Simons, D. J., & Chabris, C. F. (1999). Gorillas in our midst: sustained inattentional blindness for dynamic events. Perception, 28, 1059–1074.

    Article  PubMed  Google Scholar 

  • Sussman, E. (2007). A new view on the MMN and attention debate: the role of context in processing auditory events. Journal of Psychophysiology, 21, 60–69.

    Article  Google Scholar 

  • Sussman, E., Winkler, I., & Schröger, E. (2003). Top–down control over involuntary attention switching in the auditory modality. Psychonomic Bulletin and Review, 10, 630–637.

    Article  PubMed  Google Scholar 

  • Vachon, F., Hughes, R. W., & Jones, D. M. (2012). Broken expectations: violation of expectancies, not novelty, captures auditory attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 164–177.

    PubMed  Google Scholar 

  • Wetzel, N., Schröger, E., & Widmann, A. (2013). The dissociation between the P3a event-related potential and behavioral distraction. Psychophysiology, 50(9), 920–930.

    Article  PubMed  Google Scholar 

  • Wundt, W. (1880). Grundzüge der physiologischen psychologie. Leipzig: Engelmann.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Polly Dalton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalton, P., Hughes, R.W. Auditory attentional capture: implicit and explicit approaches. Psychological Research 78, 313–320 (2014). https://doi.org/10.1007/s00426-014-0557-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-014-0557-5

Keywords

Navigation