Skip to main content
Log in

Rapid processing of closure and viewpoint-invariant symmetry: behavioral criteria for feedforward processing

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

To pin down the processing characteristics of symmetry and closure in contour processing, we investigated their ability to activate rapid motor responses in a primed flanker task. In three experiments, participants selected as quickly and accurately as possible the one of two target contours possessing symmetry or closure. Target pairs were preceded by prime pairs whose spatial arrangement was consistent or inconsistent with respect to the required response. We tested for the efficiency and automaticity of symmetry and closure processing. For both cues, priming effects were present in full magnitude in the fastest motor responses consistent with a simple feedforward model. Priming effects from symmetry cues were independent of skewing and the orientation of their symmetry axis but sometimes failed to increase with increasing prime-target interval. We conclude that closure and (possibly) viewpoint-independent symmetry cues are extracted rapidly during the first feedforward wave of neuronal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Here, we focus on bilateral (mirror, reflection) symmetry only, because this form of symmetry is the most salient, most investigated and most relevant to humans (Treder, 2010). We will use the term “symmetry” to refer to “bilateral symmetry”.

  2. Figure-ground segregation is the process by which the visual system distinguishes a figure from its background. It is crucial for object recognition and for physical interactions with our environment. The identification of an image area as a figure or background strongly depends on the visual attributes of that area. Importantly, an area that is symmetric or enclosed is more likely to be seen as a figure than an (adjacent) area that is asymmetric (e.g., Bahnsen, 1928; Machilsen, Pauwels, & Wagemans, 2009) or open (e.g., Koffka, 1935; Kovács & Julesz, 1993).

  3. The notion of closure as a basic feature that is detected and processed by the visual system in a parallel fashion is not without controversy (e.g., Enns, 1986). Also, there is no unequivocal evidence that the processing of closure is automatic.

  4. Note that the rapid-chase criteria do not guarantee that the system is strictly feedback-free (e.g., VanRullen & Koch, 2003) but establish it to be indistinguishable from a pure feedforward system.

  5. While grouping strength can be easily matched for some grouping dimensions (e.g., similarity in brightness or size; Schmidt & Schmidt, submitted), matching is difficult to achieve with more complex grouping principles. Imagine, for example, participants adjusting the amount of symmetry in a given figure such that it is equal to the perceived amount of closure in another figure.

  6. Note that errors in inconsistent trials represent motor responses that were misled by the conflicting prime information. This follows from response priming experiments with pointing responses, in which primes initiate a response toward them and sometimes provoke a full-fledged movement to their position (cf. Schmidt et al., 2006), and experiments measuring lateralized readiness potentials (Eimer & Schlaghecken, 1998; Leuthold & Kopp, 1998; Vath & Schmidt, 2007). Priming effects in error rates, as in response times, increase with prime-target SOA because the prime signal has more time to influence the response before the target signal becomes effective (cf. Schmidt et al., 2011; Vorberg et al., 2003).

References

  • Bahnsen, P. (1928). Eine Untersuchung über Symmetrie und Asymmetrie bei visuellen Wahrnehmungen. Zeitschrift für Psychologie, 108, 129–154.

    Google Scholar 

  • Barlow, H. B., & Reeves, B. C. (1979). The versatility and absolute efficiency of detecting mirror symmetry in random dot displays. Vision Research, 19, 783–793. doi:10.1016/0042-6989(79)90154-8.

    Article  PubMed  Google Scholar 

  • Bauer, R., & Heinze, S. (2002). Contour integration in striate cortex. Classic cell responses or cooperative selection? Experimental Brain Research, 147, 145–152. doi:10.1007/s00221-002-1178-6.

    Article  PubMed  Google Scholar 

  • Baylis, C. G., & Driver, J. (1994). Parallel computation of symmetry but not repetition within visual shapes. Visual Cognition, 1, 377–400. doi:10.1080/13506289408401715.

    Article  Google Scholar 

  • Bertamini, M. (2010). Sensitivity to reflection and translation is modulated by objectness. Perception, 39, 27–40. doi:10.1068/p6393.

    Article  PubMed  Google Scholar 

  • Bullier, J. (2001). Integrated model of visual processing. Brain Research Reviews, 36, 96–107. doi:10.1016/S0165-0173(01)00085-6.

    Article  PubMed  Google Scholar 

  • Carmody, D. P., Nodine, C. F., & Locher, P. J. (1977). Global detection of symmetry. Perceptual and Motor Skills, 45, 1267–1273. doi:10.2466/pms.1977.45.3f.1267.

    Article  PubMed  Google Scholar 

  • Cousineau, D. (2005). Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson’s method. Tutorials in Quantitative Methods for Psychology, 1, 42–45.

    Google Scholar 

  • Dakin, S. C., & Herbert, A. M. (1998). The spatial region of integration for visual symmetry detection. Proceedings of the Royal Society B: Biological Sciences, 265, 659–664.

    Article  PubMed  Google Scholar 

  • Driver, J., Baylis, G. C., & Rafa, R. D. (1992). Preserved figure-ground segregation and symmetry perception in visual neglect. Nature, 360, 73–75. doi:10.1038/360073a0.

    Article  PubMed  Google Scholar 

  • Eimer, M., & Schlaghecken, F. (1998). Effects of masked stimuli on motor activation: behavioral and electrophysiological evidence. Journal of Experimental Psychology: Human Perception and Performance, 24, 1737–1747.

    PubMed  Google Scholar 

  • Elder, J. H., & Zucker, S. W. (1993). The effect of contour closure on the rapid discrimination of two-dimensional shapes. Vision Research, 33, 981–991. doi:10.1016/0042-6989(93)90080-G.

    Article  PubMed  Google Scholar 

  • Elder, J. H., & Zucker, S. W. (1998). Evidence for boundary-specific grouping. Vision Research, 38, 143–152. doi:10.1016/S0042-6989(97)00138-7.

    Article  PubMed  Google Scholar 

  • Enns, J. (1986). Seeing textons in context. Perception & Psychophysics, 39, 143–147. doi:10.3758/BF03211496.

    Article  Google Scholar 

  • Enquist, M., & Arak, A. (1994). Symmetry, beauty and evolution. Nature, 372, 169–172. doi:10.1038/372169a0.

    Article  PubMed  Google Scholar 

  • Fisher, C. B., & Bornstein, M. H. (1982). Identification of symmetry: effects of stimulus orientation and head position. Perception & Psychophysics, 32, 443–448.

    Google Scholar 

  • Friedenberg, J., & Bertamini, M. (2000). Contour symmetry detection: the influence of axis orientation and number of objects. Acta Psychologica, 105, 107–118. doi:10.1016/S0001-6918(00)00051-2.

    Article  PubMed  Google Scholar 

  • Garrigan, P., Fortunato, L., & LaSala, A. (2010). The effects of closure on contour shape learning. Journal of Vision, 10, 1167. doi:10.1167/10.7.1167.

    Article  Google Scholar 

  • Höfel, L., & Jacobsen, T. (2007). Electrophysiological indices of processing aesthetics: Spontaneous or intentional processes? International Journal of Psychophysiology, 65, 20–31. doi:10.1016/j.ijpsycho.2007.02.007.

    Article  PubMed  Google Scholar 

  • Houtkamp, R., & Roelfsema, P. R. (2010). Parallel and serial grouping of image elements in visual perception. Journal of Experimental Psychology: Human Perception and Performance, 36, 1443–1459. doi:10.1037/a0020248.

    PubMed  Google Scholar 

  • Jacobsen, T., & Höfel, L. (2003). Descriptive and evaluative judgment processes: Behavioral and electrophysiological indices of processing symmetry and aesthetics. Cognitive, Affective, & Behavioral Neuroscience, 3, 289–299. doi:10.3758/CABN.3.4.289.

    Article  Google Scholar 

  • Jenkins, B. (1983). Component processes in the perception of bilaterally symmetric dot textures. Perception & Psychophysics, 34, 433–440. doi:10.3758/BF03203058.

    Article  Google Scholar 

  • Julesz, B. (2006). Foundations of cyclopean perception. Cambridge: MIT Press. (Original published in 1971).

  • Kanbe, F. (2008). Role of endpoints and closure in feature search. Japanese Psychological Research, 50, 145–151. doi:10.1111./j.1468-5884.2008.00371.x.

    Article  Google Scholar 

  • Kiesel, A., Kunde, W., & Hoffmann, J. (2007). Mechanisms of subliminal response priming. Advances in Cognitive Psychology, 3, 307–315. doi:10.2478/v10053-008-0032-1.

    Article  PubMed Central  Google Scholar 

  • Klotz, W., Heumann, M., Ansorge, U., & Neumann, O. (2007). Electrophysiological activation by masked primes: Independence of prime-related and target-related activities. Advances in Cognitive Psychology, 3, 449–465.

    Article  PubMed Central  Google Scholar 

  • Koffka, K. (1935). Principles of Gestalt psychology. London: Routledge & Kegan Paul.

    Google Scholar 

  • Koning, A., & Van Lier, R. (2006). No symmetry advantage when object matching involves accidental viewpoints. Psychological Research, 70, 52–58. doi:10.1007/s00426-004-0191-8.

    Article  PubMed  Google Scholar 

  • Koning, A., & Wagemans, J. (2009). Detection of symmetry and repetition in one and two objects: Structures versus strategies. Experimental Psychology, 56, 5–17. doi:10.1027/1618-3169.56.1.5.

    Article  PubMed  Google Scholar 

  • Kovács, I., & Julesz, B. (1993). A closed curve is much more than an incomplete one: Effect of closure in figure-ground segmentation. Proceedings of the National Academy of Sciences of the United States of America, 90, 7495–7497.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lachmann, T., & van Leeuwen, C. (2008). Goodness is central: Task-invariance of perceptual organization in a dual-task setting. Japanese Psychological Research, 50, 193–203.

    Google Scholar 

  • Lamme, V. A. F., & Roelfsema, P. R. (2000). The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neurosciences, 23, 571–579. doi:10.1016/S0166-2236(00)01657-X.

    Article  PubMed  Google Scholar 

  • Leuthold, H., & Kopp, B. (1998). Mechanisms of priming by masked stimuli: Inferences from event-related brain potentials. Psychological Science, 9, 263–269.

    Article  Google Scholar 

  • Locher, P. J., & Wagemans, J. (1993). The effects of element type and spatial grouping on symmetry detection. Perception, 22, 565–587. doi:10.1068/p220565.

    Article  PubMed  Google Scholar 

  • Machilsen, B., Pauwels, M., & Wagemans, J. (2009). The role of vertical mirror symmetry in visual shape detection. Journal of Vision, 9(12), 11, 1–11. doi:10.1167/9.12.11.

  • Marino, A. C., & Scholl, B. J. (2005). The role of closure in defining the “objects” of object-based attention. Perception & Psychophysics, 67, 1140–1149. doi:10.3758/BF03193547.

    Article  Google Scholar 

  • Mathes, B., & Fahle, M. (2007). Closure facilitates contour integration. Vision Research, 47, 818–827. doi:10.1016/j.visres.2006.11.014.

    Article  PubMed  Google Scholar 

  • Mori, S. (1997). Effects of absolute and relative gap sizes in visual search for closure. Canadian Journal of Experimental Psychology, 51, 112–124. doi:10.1037/1196-1961.51.2.112.

    Article  PubMed  Google Scholar 

  • Niimi, R., Watanabe, K., & Yokosawa, K. (2005). The role of visible persistence for perception of visual bilateral symmetry. Japanese Psychological Research, 47, 262–270. doi:10.1111/j.1468-5884.2005.00295.x.

    Article  Google Scholar 

  • Niimi, R., & Yokosawa, K. (2008). Determining the orientation of depth-rotated familiar objects. Psychonomic Bulletin & Review, 15, 208–214. doi:10.3758/PBR.15.1.208.

    Article  Google Scholar 

  • Norcia, A. M., Candy, T. R., Pettet, M. W., Vildavski, V. Y., & Tyler, C. W. (2002). Temporal dynamics of the human response to symmetry. Journal of Vision, 2, 132–139. doi:10.1167/2.2.1.

    Article  PubMed  Google Scholar 

  • Oka, S., Victor, J. D., Conte, M. M., & Yanagida, T. (2007). VEPs elicited by local correlations and global symmetry: characteristics and interactions. Vision Research, 47, 2212–2222. doi:10.1016/j.visres.2007.03.020.

    Article  PubMed Central  PubMed  Google Scholar 

  • Palmer, S. E., & Ghose, T. (2008). Extremal edges: A powerful cue to depth perception and figure-ground organization. Psychological Science, 19, 77–84.

    Article  PubMed  Google Scholar 

  • Palmer, S. E., & Hemenway, K. (1978). Orientation and symmetry: Effects of multiple, rotational, and near symmetries. Journal of Experimental Psychology: Human Perception and Performance, 4, 691–702. doi:10.1037/0096-1523.4.4.691.

    PubMed  Google Scholar 

  • Pashler, H. (1990). Coordinate frame for symmetry detection and object recognition. Journal of Experimental Psychology: Human Perception and Performance, 16, 150–163. doi:10.1037/0096-1523.16.1.150.

    PubMed  Google Scholar 

  • Rainville, S. J. M., & Kingdom, F. A. A. (2000). The functional role of oriented spatial filters in the perception of mirror symmetry–psychophysics and modeling. Vision Research, 40, 2621–2644. doi:10.1016/S0042-6989(00)00110-3.

    Article  PubMed  Google Scholar 

  • Rock, I., & Leaman, R. (1963). An experimental analysis of visual symmetry. Acta Psychologica, 21, 171–183. doi:10.1016/0001-6918(63)90047-7.

    Article  Google Scholar 

  • Roelfsema, P. R. (2006). Cortical algorithms for perceptual grouping. Annual Review of Neuroscience, 29, 203–227.

    Article  PubMed  Google Scholar 

  • Roland, P. E. (2010). Six principles of visual cortical dynamics. Frontiers in Systems Neuroscience, 4, 28. doi:10.3389/fnsys.2010.00028.

    Article  PubMed Central  PubMed  Google Scholar 

  • Saarinen, J., & Levi, D. M. (1999). The effect of contour closure on shape perception. Spatial Vision, 2, 227–238. doi:10.1163/156856899X00139.

    Article  Google Scholar 

  • Sasaki, Y., Vanduffel, W., Knutsen, T., Tyler, C., & Tootell, R. (2005). Symmetry activates extrastriate visual cortex in human and nonhuman primates. Proceedings of the National Academy of Sciences (USA), 102, 3159–3163. doi:10.1073/pnas.0500319102.

    Article  Google Scholar 

  • Sawada, T., & Pizlo, Z. (2008). Detection of skewed symmetry. Journal of Vision, 8(5), 14, 1–18. doi:10.1167/8.5.14.

  • Schmidt, F., Haberkamp, A., & Schmidt, T. (2011a). Dos and don’ts in response priming. Advances in Cognitive Psychology, 7, 120–131. doi:10.2478/v10053-008-0092-2.

    Article  PubMed Central  PubMed  Google Scholar 

  • Schmidt, T., Haberkamp, A., Veltkamp, G. M., Weber, A., Seydell-Greenwald, A., & Schmidt, F. (2011b). Visual processing in rapid-chase systems: Image processing, attention, and awareness. Frontiers in Psychology, 2, 169. doi:10.3389/fpsyg.2011.00169.

    PubMed Central  PubMed  Google Scholar 

  • Schmidt, T., Niehaus, S., & Nagel, A. (2006). Primes and targets in rapid chases: Tracing sequential waves of motor activation. Behavioural Neuroscience, 120, 1005–1016. doi:10.1016/j.neuroscience.2006.11.044.

    Article  Google Scholar 

  • Schmidt, T., & Schmidt, F. (2009). Processing of natural images is feedforward: A simple behavioral test. Attention, Perception, & Psychophysics, 71, 594–606.

    Article  Google Scholar 

  • Schmidt, F., & Schmidt, T. (submitted). Grouping principles in direct competition.

  • Schumann, F. (1900). Beiträge zur Analyse der Gesichtswahrnehmungen. Erste Abhandlung. Einige Beobachtungen über die Zusammenfassung von Gesichtseindrücken zu Einheiten. Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 23, 1–32.

    Google Scholar 

  • Seydell-Greenwald, A., & Schmidt, T. (2012). Rapid activation of motor responses by illusory contours. Journal of Experimental Psychology: Human Perception and Performance, 38, 1168–1182.

    PubMed  Google Scholar 

  • Tapia, E., Breitmeyer, B. G., & Shooner, C. R. (2010). Role of task-directed attention in nonconscious and conscious response priming by form and color. Journal of Experimental Psychology: Human Perception and Performance, 36, 74–87.

    PubMed  Google Scholar 

  • Thorpe, S. J., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381, 520–522. doi:10.1038/381520a0.

    Article  PubMed  Google Scholar 

  • Treder, M. S. (2010). Behind the looking glass: a review on human symmetry perception. Symmetry, 2, 1510–1543. doi:10.3390/sym2031510.

    Article  Google Scholar 

  • Treisman, A., & Paterson, R. (1984). Emergent features, attention, and object perception. Journal of Experimental Psychology: Human Perception and Performance, 10, 12–31. doi:10.1037/0096-1523.10.1.12.

    PubMed  Google Scholar 

  • Treisman, A., & Souther, J. (1985). Search asymmetry: A diagnostic for preattentive processing of separable features. Journal of Experimental Psychology: General, 114, 285–310. doi:10.1037/0096-3445.114.3.285.

    Article  Google Scholar 

  • Tyler, C. W., Baseler, H. A., Kontsevich, L. L., Likova, L. T., Wade, A. R., & Wandell, B. A. (2005). Predominantly extra-retinotopic cortical response to pattern symmetry. Neuroimage, 24, 306–314. doi:10.1016/j.neuroimage.2004.09.018.

    Article  PubMed  Google Scholar 

  • Van der Helm, P. A., & Leeuwenberg, E. L. J. (1996). Goodness of visual regularities: A nontransformational approach. Psychological Review, 103, 429–456.

    Article  PubMed  Google Scholar 

  • Van der Helm, P. A., & Leeuwenberg, E. L. J. (1999). A better approach to goodness: Reply to Wagemans (1999). Psychological Review, 106, 622–630.

    Article  Google Scholar 

  • Van der Helm, P. A., & Treder, M. S. (2009). Detection of (anti)symmetry and (anti)repetition: Perceptual mechanisms versus cognitive strategies. Vision Research, 49, 2754–2763. doi:10.1016/j.visres.2009.08.015.

    Article  PubMed  Google Scholar 

  • VanRullen, R., & Koch, C. (2003). Is perception discrete or continuous? Trends in Cognitive Sciences, 7, 207–213. doi:10.1016/S1364-6613(03)00095-0.

    Article  PubMed  Google Scholar 

  • VanRullen, R., & Thorpe, S. J. (2001). Is it a bird? Is it a plane? Ultra-rapid visual categorization of natural and artifactual objects. Perception, 30, 655–668. doi:10.1068/p3029.

    Article  PubMed  Google Scholar 

  • Vath, N., & Schmidt, T. (2007). Tracing sequential waves of rapid visuomotor activation in lateralized readiness potentials. Neuroscience, 145, 197–208.

    Article  PubMed  Google Scholar 

  • Vorberg, D., Mattler, U., Heinecke, A., Schmidt, T., & Schwarzbach, J. (2003). Different time courses for visual perception and action priming. Proceedings of the National Academy of Sciences USA, 100, 6275–6280.

    Article  Google Scholar 

  • Wagemans, J. (1993). Skewed symmetry: A nonaccidental property used to perceive visual forms. Journal of Experimental Psychology: Human Perception and Performance, 19, 364–380. doi:10.1037/0096-1523.19.2.364.

    PubMed  Google Scholar 

  • Wagemans, J. (1995). Detection of visual symmetries. Spatial Vision, 9, 9–32. doi:10.1163/156856895X00098.

    Article  PubMed  Google Scholar 

  • Wagemans, J. (1997). Characteristics and models of human symmetry detection. Trends in Cognitive Sciences, 1, 346–352. doi:10.1016/S1364-6613(97)01105-4.

    Article  PubMed  Google Scholar 

  • Wagemans, J., Van Gool, L., & d’Ydewalle, G. (1991). Detection of symmetry in tachistoscopically presented dot patterns: Effects of multiple axes and skewing. Perception & Psychophysics, 50, 413–427. doi:10.3758/BF03205058.

    Article  Google Scholar 

  • Wagemans, J., Van Gool, L., & D’Ydewalle, G. (1992). Orientational effects and component processes in symmetry detection. Quarterly Journal of Experimental Psychology A, 44, 475–508. doi:10.1080/14640749208401295.

    Article  Google Scholar 

  • Wagemans, J., Van Gool, L., Swinnen, V., & Van Horebeek, J. (1993). Higher-order structure in regularity detection. Vision Research, 33, 1067–1088. doi:10.1016/0042-6989(93)90241-N.

    Article  PubMed  Google Scholar 

  • Wenderoth, P. (1994). The salience of vertical symmetry. Perception, 23, 221–236. doi:10.1068/p230221.

    Article  PubMed  Google Scholar 

  • Wenderoth, P. (1997). The effects on bilateral symmetry detection of multiple symmetry, near symmetry, and axis orientation. Perception, 26, 891–904. doi:10.1068/p260891.

    Article  PubMed  Google Scholar 

  • Wenderoth, P. (2000). The differential effects of simultaneous and successive cueing on the detection of bilateral symmetry in dot patterns. The Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 53, 165–190.

    Google Scholar 

  • Wenderoth, P., & Welsh, S. (1998). Effects of pattern orientation and number of symmetry axes on the detection of mirror symmetry in dot and solid patterns. Perception, 27, 965–976. doi:10.1068/p270965.

    Article  PubMed  Google Scholar 

  • Wertheimer, M. (1923). Untersuchungen zur Lehre von der Gestalt, II. Psychologische Forschung, 4, 301–350.

    Article  Google Scholar 

  • Zipser, K., Lamme, V. A. F., & Schiller, P. H. (1996). Contextual modulation in primary visual cortex. The Journal of Neuroscience, 16, 7376–7389.

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Shanley Allen, Neiloufar Family, Kalliopi Katsika, Mark Calley, Andreas Weber, Alina Kholodova, and Anke Haberkamp for comments on an early version of the manuscript and Michael Herzog, Rob van Lier, Johan Wagemans, and Rufin VanRullen for helpful suggestions. This research was supported by Schm1671/1-5 of the German Research Foundation to T.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filipp Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, F., Schmidt, T. Rapid processing of closure and viewpoint-invariant symmetry: behavioral criteria for feedforward processing. Psychological Research 78, 37–54 (2014). https://doi.org/10.1007/s00426-013-0478-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-013-0478-8

Keywords

Navigation