Skip to main content
Log in

Synergistic effects between [Si-hemicellulose matrix] ligands and Zn ions in inhibiting Cd ion uptake in rice (Oryza sativa) cells

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Our study demonstrated that Zn alleviated Cd toxicity in the presence of Si in the cell walls by Zn 2+ binding to ligands through the formation of the [Si-hemicellulose matrix]Zn complexes that restrict the uptake of Cd.

The plant cell wall exhibits preferential sites for the accumulation of metals at toxic concentrations. Through modification of wall polysaccharide components, elements, such as silicon (Si) and zinc (Zn), may play active roles in alleviating the toxicity of heavy metals, including cadmium (Cd). However, enhanced tolerance for Cd stress may rely on synergistic effects between nutrient elements. Here, we cultured Si-accumulating suspension cells of rice (Oryza sativa) exposed to Cd and Zn treatments, either separately or in combination, and investigated cells using noninvasive microtest technology (NMT), inductively coupled plasma mass spectroscopy (ICP-MS) and atomic force microscopy (AFM). We found that Zn alleviated Cd toxicity in the presence of Si in the cell walls by binding of Zn2+ to ligands through the formation of the [Si-hemicellulose matrix]Zn complexes and co-precipitates to greatly inhibit Cd2+ uptake into cells. This, in turn, induced the lower expression of Cd-related transporters. This synergistic effect could be decisive for the survival of cells under conditions of high Cd concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adamis PD, Gomes DS, Pinto MLC, Panek AD, Eleutherio EC (2004) The role of glutathione transferases in cadmium stress. Toxicol Lett 154:81–88

    Article  CAS  PubMed  Google Scholar 

  • Ahmed M, Kamran A, Asif M, Qadeer U, Ahmed ZI, Goyal A (2013) Silicon priming: a potential source to impart abiotic stress tolerance in wheat: a review. Aust J Crop Sci 7:484

    CAS  Google Scholar 

  • Ammar WB, Zarrouk M, Nouairi I (2015) Zinc alleviates cadmium effects on growth, membrane lipid biosynthesis and peroxidation in Solanum lycopersicum leaves. Biologia 70:198–207

    Article  CAS  Google Scholar 

  • Aravind P, Prasad MNV (2003) Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L.: a free floating freshwater macrophyte. Plant Physiol Biochem 41:391–397

    Article  CAS  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    Article  CAS  PubMed  Google Scholar 

  • Brzóska MM, Moniuszko-Jakoniuk J (2001) Interactions between cadmium and zinc in the organism. Food Chem Toxicol 39:967–980

    Article  PubMed  Google Scholar 

  • Chakravarty B, Srivastava S (1997) Effect of cadmium and zinc interaction on metal uptake and regeneration of tolerant plants in linseed. Agr Ecosyst Environ 61:45–50

    Article  CAS  Google Scholar 

  • Chou TS, Chao YY, Huang WD, Hong CY, Kao CH (2011) Effect of magnesium deficiency on antioxidant status and cadmium toxicity in rice seedlings. J Plant Physiol 168:1021–1030

    Article  CAS  PubMed  Google Scholar 

  • Da Cunha KPV, do Nascimento CWA (2009) Silicon effects on metal tolerance and structural changes in maize (Zea mays L.) grown on a cadmium and zinc enriched soil. Water Air Soil Pollut 197:323–330

    Article  Google Scholar 

  • Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98:29–36

    Article  CAS  PubMed  Google Scholar 

  • Egan SK, Bolger PM, Carrington CD (2007) Update of US FDA’s total diet study foodlist and diets. J Exp Sci Environ Epidemiol 17:573–582

    Article  CAS  Google Scholar 

  • Epstein E (2009) Silicon: its manifold roles in plants. Ann Appl Biol 155:155–160

    Article  CAS  Google Scholar 

  • Ghareeb H, Bozsó Z, Ott PG, Repenning C, Stahl F, Wydra K (2011) Transcriptome of silicon-induced resistance against Ralstonia solanacearum in the silicon non-accumulator tomato implicates priming effect. Physiol Mol Plant P 75:83–89

  • Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  Google Scholar 

  • Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D (1998) Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Natl Acad Sci USA 95:7220–7224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu HH, Zhan SS, Wang SZ, Tang YT, Chaney RL, Fang XH, Cai XD, Qiu RL (2012) Silicon-mediated amelioration of zinc toxicity in rice (Oryza sativa L.) seedlings. Plant Soil 350:193–204

    Article  CAS  Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. BBA-Biomembr 1465:190–198

    Article  CAS  Google Scholar 

  • Guerriero G, Hausman JF, Legay S (2016) Silicon and the plant extracellular matrix. Front Plant Sci 7:463

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  PubMed  Google Scholar 

  • Hassan MJ, Zhang G, Wu F, Wei K, Chen Z (2005) Zinc alleviates growth inhibition and oxidative stress caused by cadmium in rice. J Plant Nutr Soil Sci 168:255–261

    Article  CAS  Google Scholar 

  • Ishimaru Y, Kakei Y, Shimo H, Bashir K, Sato Y, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK (2011) A rice phenolic efflux transporter is essential for solubilizing precipitated apoplasmic iron in the plant stele. J Biol Chem 286:24649–24655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalis EJ, Davis TA, Town RM, Leeuwen HPV (2009) Impact of ionic strength on Cd (II) partitioning between alginate gel and aqueous media. Environ Sci Technol 43:1091–1096

    Article  CAS  PubMed  Google Scholar 

  • Kumari M, Sinhal VK, Srivastava A, Singh VP (2011) Zinc alleviates cadmium induced toxicity in Vigna radiata (L.) Wilczek. J Phytol 3:43–46

    CAS  Google Scholar 

  • Liang Y, Sun W, Zhu YG, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147:422–428

    Article  CAS  PubMed  Google Scholar 

  • Lin YF, Aarts MG (2012) The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci 69:3187–3206

    Article  CAS  PubMed  Google Scholar 

  • Lin HM, Fang CX, Li YZ, Lin WW, He JY, Lin RY, Lin WX (2017) Cadmium-stress mitigation through gene expression of rice and silicon addition. Plant Growth Regul 81:91–101

    Article  CAS  Google Scholar 

  • Liu J, Ma J, He CW, Li XL, Zhang WJ, Xu FS, Lin YJ, Wang LJ (2013) Inhibition of cadmium ion uptake in rice (Oryza sativa) cells by a wall-bound form of silicon. New Phytol 200:691–699

    Article  CAS  PubMed  Google Scholar 

  • Lu LL, Tian SK, Yang XE, Wang XC, Brown P, Li TQ, He ZL (2008) Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii. J Exp Bot 59:3203–3213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lux A, Martinka M, Vaculík M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37

    Article  CAS  PubMed  Google Scholar 

  • Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50:11–18

    Article  CAS  Google Scholar 

  • Ma J, Cai HM, He CW, Zhang WJ, Wang LJ (2015) A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells. New Phytol 206:1063–1074

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Sheng H, Li X, Wang LJ (2016) iTRAQ-based proteomic analysis reveals the mechanisms of silicon-mediated cadmium tolerance in rice (Oryza sativa) cells. Plant Physiol Biochem 104:71–80

    Article  CAS  PubMed  Google Scholar 

  • Metwally A, Finkemeier I, Georgi M, Dietz KJ (2003) Salicylic acid alleviates the cadmium toxicity in barley seedling. Plant Physiol 132:272–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nan Z, Li J, Zhang J, Cheng G (2002) Cadmium and zinc interactions and their transfer in soil-crop system under actual field conditions. Sci Total Environ 285:187–195

    Article  CAS  PubMed  Google Scholar 

  • Neumann D, ZurNieden U (2001) Silicon and heavy metal tolerance of higher plants. Phytochemistry 56:685–692

    Article  CAS  PubMed  Google Scholar 

  • Niyogi S, Wood CM (2004) Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals. Environ Sci Technol 38:6177–6192

    Article  CAS  PubMed  Google Scholar 

  • Ohshima H, Kondo T (1990) Relationship among the surface potential, Donnan potential and charge density of ion-penetrable membranes. Biophys Chem 38:117–122

    Article  CAS  PubMed  Google Scholar 

  • Palmgren MG, Clemens S, Williams LE, Krämer U, Borg S, Schjørring JK, Sanders D (2008) Zinc biofortification of cereals: problems and solutions. Trends Plant Sci 13:464–473

    Article  CAS  PubMed  Google Scholar 

  • Prabagar S, Hodson MJ, Evans DE (2011) Silicon amelioration of aluminium toxicity and cell death in suspension cultures of Norway spruce [Picea abies (L.) Karst.]. Environ Exp Bot 70:266–276

    Article  CAS  Google Scholar 

  • Qiu RL, Thangavel P, Hu PJ, Senthilkumar P, Ying RR, Tang YT (2011) Interaction of cadmium and zinc on accumulation and sub-cellular distribution in leaves of hyperaccumulator Potentilla griffithii. J Hazard Mater 186:1425–1430

    Article  CAS  PubMed  Google Scholar 

  • Ramesh SA, Shin R, Eide DJ, Schachtman DP (2003) Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol 133:126–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Thomas R, Moreno-Sanchez R, Garcia-Garcia JD (2016) Accumulation of zince protects against cadmium stress in photosynthetic Euglena gracilis. Environ Exp Bot 131:19–31

    Article  Google Scholar 

  • Sanita di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24:2155–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebastian A, Prasad MNV (2014) Cadmium minimization in rice. A review. Agron Sustain Dev 34:155–173

    Article  CAS  Google Scholar 

  • Sherbakova TA, Masyukova YA, Safonova TA et al (2005) Conserved motif CMLD in silicic acid transport proteins of diatoms. Mol Biol 39:269–280

    Article  CAS  Google Scholar 

  • Song A, Li P, Li Z, Fan F, Nikolic M, Liang Y (2011) The alleviation of zinc toxicity by silicon is related to zinc transport and antioxidative reactions in rice. Plant Soil 344:319–333

    Article  CAS  Google Scholar 

  • Sun J, Wang R, Zhang X, Yu Y, Zhao R, Li Z, Chen S (2013) Hydrogen sulfide alleviates cadmium toxicity through regulations of cadmium transport across the plasma and vacuolar membranes in Populus euphratica cells. Plant Physiol Biochem 65:67–74

    Article  CAS  PubMed  Google Scholar 

  • Szuster-Ciesielska A, Stachura A, Słotwińska M, Kamińska T, Śnieżko R, Paduch R, Abramczyk D, Filar J, Kandefer-Szerszeń M (2000) The inhibitory effect of zinc on cadmium-induced cell apoptosis and reactive oxygen species (ROS) production in cell cultures. Toxicology 145:159–171

    Article  CAS  PubMed  Google Scholar 

  • Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2011) The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J Exp Bot 62:4843–4850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi R, Bashir K, Ishimaru Y, Nishizawa NK, Nakanishi H (2012) The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice. Plant Signal Behav 7:1605–1607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas J, Darvill A, Albersheim P (1989) Isolation and structural characterization of the pectic polysaccharide rhamnogalacturonan II from walls of suspension-cultured rice cells. Carbohydr Res 185:261–277

    Article  CAS  Google Scholar 

  • Tsai CC, Hung HH, Liu CP, Chen YT, Pan CY (2012) Changes in plasma membrane surface potential of PC12 cells as measured by Kelvin probe force microscopy. PLoS One 7:e33849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner JG (1993) Accumulation of cadmium in crop plants and its consequences to human health. Adv Agron 51:173–210

    Article  CAS  Google Scholar 

  • Wang LJ, Wang YH, Chen Q, Cao W, Li M, Zhang FS (2000) Silicon-induced cadmium tolerance of rice seedlings. J Plant Nutr 23:1397–1406

    Article  CAS  Google Scholar 

  • Yang JL, Zhu XF, Peng YX, Zheng C, Li GX, Liu Y, Shi YZ, Zheng SJ (2011) Cell wall hemicellulose contributes significantly to aluminum adsorption and root growth in Arabidopsis. Plant Physiol 155:1885–1892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye M, Song Y, Long J, Wang R, Baerson SR, Pan Z, Zhu-Salzman K, Xie J, Cai K, Luo S, Zeng R (2013) Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon. Proc Natl Acad Sci USA 110:E3631–E3639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu P, Yuan J, Zhang H, Deng X, Ma M, Zhang H (2016) Engineering metal-binding sites of bacterial CusF to enhance Zn/Cd accumulation and resistance by subcellular targeting. J Hazard Mater 302:275–285

    Article  CAS  PubMed  Google Scholar 

  • Zhang CC, Wang LJ, Nie Q, Zhang WX, Zhang FS (2008) Long-term effects of exogenous silicon on cadmium translocation and toxicity in rice (Oryza sativa L.). Environ Exp Bot 62:300–307

    Article  CAS  Google Scholar 

  • Zhao H, Eide D (1996) The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. Proc Natl Acad Sci USA 93:2454–2458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zonia L, Munnik T (2007) Life under pressure: hydrostatic pressure in cell growth and function. Trends Plant Sci 12:90–97

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31672222 and 31172027) and the Fundamental Research Funds for the Central Universities (2662015PY206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Supplementary data: Supplementary data are available at Planta online.

Below is the link to the electronic supplementary material.

Table S1. Primers for RT-PCR analysis of the genes (PDF 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Zhang, X. & Wang, L. Synergistic effects between [Si-hemicellulose matrix] ligands and Zn ions in inhibiting Cd ion uptake in rice (Oryza sativa) cells. Planta 245, 965–976 (2017). https://doi.org/10.1007/s00425-017-2655-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2655-2

Keywords

Navigation