Skip to main content
Log in

Functional testing of a PF02458 homologue of putative rice arabinoxylan feruloyl transferase genes in Brachypodium distachyon

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

We show that changing the expression of a putative feruloyl transferase gene belonging to the BAHD acyl-transferase family alters the levels of cell wall esterified ferulates and diferulates in Brachypodium distachyon cell walls.

While the potential of grass cell walls for biofuel production has been realized, the technology for lignocellulosic biomass conversion for the production of ethanol is still inefficient because of structural mechanisms that plants have evolved to make the cell wall recalcitrant to enzymatic attack. One of these mechanisms in grasses involves the esterification of arabinoxylans in the cell wall with ferulic acid via an ester linkage to arabinose side chains on xylans. These ferulates undergo oxidative coupling reactions to form ferulate dimers, thus crosslinking polysaccharides. Arabinoxylan feruloylation is an important factor that determines cell wall recalcitrance because it directly cross-links xylans and because ferulates act as nucleating sites for the formation of lignin and for the linkage of lignin to the xylan/cellulose network. Here we report on the effects of changing the expression of Bradi2g43520 (BdAT1), a homologue of the rice feruloyl transferase gene Os01g42880 belonging to the Pfam PF02458 family, in Brachypodium distachyon. Down regulation in several independent RNAi::BdAT1 lines, resulted in up to a 35 % reduction of ferulate levels in both leaves and stems compared to control plants, over 2–3 generations of selfing. In contrast, overexpression of putative BdAT1 resulted in an increase of up to 58 and 47 % of ferulate levels in leaves and stems, respectively, compared to control plants and analyzed over 2–3 generations of selfing. These findings suggest that Bradi2g43520 may be a good candidate for feruloylation of AX in Brachypodium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AFT:

Arabinoxylan feruloyl-transferase

AIR:

Isolated cell walls

Ara:

Arabinose

AX:

Arabinoxylan

cDNA:

Complementary DNA

EST:

Expressed sequence tags

FA:

Ferulic acid

FAEA:

Ferulic acid esterase

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

HCAs:

Hydroxycinnamic acids

HPAEC:

High performance anion exchange chromatography

HPLC:

High performance liquid chromatography

PAHBAH:

ρ-hydroxybenzoic acid hydrazide

pCA:

p-coumarate

qRT-PCR:

Quantitative reverse-transcription polymerase chain reaction

RNAi:

RNA interference

SamDC:

S-adenosylmethionine decarboxylase

TFA:

Trifluoroacetic acid

UBC18:

Ubiquitin-conjugating enzyme 18

CaMV 35S:

Cauliflower mosaic virus (CaMV) 35S promoter

References

  • Applied Biosystems (2002) Designing TaqMan® MGB probe and primer sets for gene expression using Primer Express® Software Version 2.0, pp 1–15

  • Azuma T, Okita N, Nanmori T, Yasuda T (2005) Changes in cell wall-bound phenolic acids in the internodes of submerged floating rice. Plant Prod Sci 8:441–446

    Article  CAS  Google Scholar 

  • Bartley LE, Peck ML, Kim S-R, Ebert B, Manisseri C, Chiniquy DM, Sykes R, Gao L, Rautengarten C, Vega-Sánchez ME, Benke PI, Canlas PE, Cao P, Brewer S, Lin F, Smith WL, Zhang X, Keasling JD, Jentoff RE, Foster SB, Zhou J, Ziebell A, An G, Scheller HV, Ronald PC (2013) Overexpression of a BAHD acyltransferase, OsAt10, alters rice cell wall hydroxycinnamic acid content and saccharification. Plant Physiol 161:1615–1633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brunner AM, Yakovlev IA, Strauss SH (2004) Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol 4:14–20

    Article  PubMed Central  PubMed  Google Scholar 

  • Buanafina M M de O (2009) Feruloylation in grasses: current and future perspectives. Mol Plant 2:861–872

    Article  CAS  Google Scholar 

  • Buanafina M M de O, Fescemyer HW (2012) Modification of esterified cell wall phenolics increases vulnerability of tall fescue to insect herbivory by the fall armyworm. Planta 236:513–523

    Article  CAS  Google Scholar 

  • Buanafina M M de O, Langdon T, Hauck B, Dalton SJ, Morris P (2006) Manipulating the phenolic acid content and digestibility of Italian ryegrass (Lolium multiflorum) by vacuolar-targeted expression of a fungal ferulic acid esterase. Appl Biochem Biotechnol 129–132:416–426

    PubMed  Google Scholar 

  • Buanafina M M de O, Langdon T, Hauck B, Dalton S, Morris P (2008) Expression of a fungal ferulic acid esterase increases cell wall digestibility of tall fescue (Festuca arundinacea). Plant Biotechnol J 6:264–280

    Article  CAS  PubMed  Google Scholar 

  • Buanafina M M de O, Langdon T, Hauck B, Dalton S, Timms-Taravella E, Morris P (2010) Targeting expression of a fungal ferulic acid esterase to the apoplast, endoplasmic reticulum or golgi can disrupt feruloylation of the growing cell wall and increase the biodegradability of tall fescue (Festuca arundinacea). Plant Biotechnol J 8:316–331

    Article  CAS  PubMed  Google Scholar 

  • Buanafina M M de O, Langdon T, Dalton S, Morris P (2012) Expression of a Trichoderma reesei β-1,4endo-xylanase in tall fescue modifies cell wall structure and digestibility and elicits pathogen defence responses. Planta 236:1757–1774

    Article  CAS  PubMed  Google Scholar 

  • Bunzel M, Allerdings E, Sinwell V, Ralph J, Steinhart H (2002) Cell wall hydroxycinnamates in wild rice (Zizania aquatica L.) insoluble dietary fiber. Eur Food Res Technol 214:482–488

    Article  CAS  Google Scholar 

  • Bunzel M, Ralph J, Funk C, Steinhart H (2003) Isolation and identification of a ferulic acid dehydrotrimer from saponified maize bran insoluble fiber. Eur Food Res Technol 217:128–133

    Article  CAS  Google Scholar 

  • Burr SJ, Fry SC (2009) Extracellular cross-linking of maize arabinoxylans by oxidation of feruloyl esters to form oligoferuloyl esters and ether-like bonds. Plant J 58:554–567

    Article  CAS  PubMed  Google Scholar 

  • Carpita NC, Mccann MC (2000) The cell wall. In: Buchnan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Biologists, Rockville, pp 52–108

    Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • D’Auria JC (2006) Acyltransferases in plants: a good time to be BAHD. Curr Opin Plant Biol 9:331–340

    Article  PubMed  Google Scholar 

  • de Vries RP, Michelsen B, Poulsen CH, Kroon PA, van denHeuvel RH, Faulds CB, Williamson G, van den Hombergh JP, Visser J (1997) The faeA genes from Aspergillus niger and Aspergillus tubingensis encode ferulic acid esterases involved in degradation of complex cell wall polysaccharides. Appl Environ Microbiol 63:4638–4644

    PubMed Central  PubMed  Google Scholar 

  • Eraso F, Hartley RD (1990) Monomeric and dimeric phenolic constituents of plant-cell walls possible factors influencing wall biodegradability. J Sci Food Agric 51:163–170

    Article  CAS  Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer ELL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fry SC (1987) Intracellular feruloylation of pectic polysaccharides. Planta 171:205–211

    Article  CAS  PubMed  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten Uffe, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40(D1):D1178–D1186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grabber JH, Hatfield RD, Ralph J (1998) Diferulate cross-links impede the enzymatic degradation of non-lignified maize walls. J Sci Food Agric 77:193–200

    Article  CAS  Google Scholar 

  • Grabber JH, Ralph J, Hatfield RD (2000) Cross-linking of maize walls by ferulate dimerization and incorporation into lignin. J Agric Food Chem 48:6106–6113

    Article  CAS  PubMed  Google Scholar 

  • Graca J, Santos S (2006) Glycerol-derived ester oligomers from cork suberin. Chem Phys Lipids 144:96–107

    Article  CAS  PubMed  Google Scholar 

  • Hatfield RD, Wilson JR, Mertens DR (1999) Composition of cell walls isolated from cell types of grain sorghum stems. J Sci Food Agric 79:891–899

    Article  CAS  Google Scholar 

  • Hong S-Y, Seo PJ, Yang M-S, Xiang F, Park C-M (2008) Exploring valid reference genes for gene expression studies in Brachypodium distachyon by real-time PCR. BMC Plant Biol 8:112–122

    Article  PubMed Central  PubMed  Google Scholar 

  • Ishii T (1997) Structure and functions of feruloylated polysaccharides. Plant Sci 27:111–127

    Article  Google Scholar 

  • Jung HG, Phillips RL (2010) Putative seedling ferulate ester (sfe) maize mutant: morphology, biomass yield, and stover cell wall composition and rumen degradability. Crop Sci 50:403–418

    Article  Google Scholar 

  • Jung HG, Ralph J, Hatfield D (1991) Degradability of phenolic acid-hemicellulose esters: a model system. J Sci Food Agric 56:469–478

    Article  CAS  Google Scholar 

  • Kamisaka S, Takeda S, Takahashi K, Shibata K (1990) Diferulic and ferulic acid in the cell-wall of Avena coleoptiles—their relationships to mechanical-properties of the cell-wall. Physiol Plant 78:1–7

    Article  CAS  Google Scholar 

  • Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Bio/Technology 9:963–967

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Song J, Peng S, Wang JP, Qu G-Z, Sederoff RR, Chiang VL (2014) Plant biotechnology for lignocellulosic biofuel production. Plant Biotechnol J 11:1174–1192

    Article  Google Scholar 

  • Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38:449–467

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCтmethod. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lotfy S, Negrel J, Javelle F (1994) Formation of omega-feruloyloxypalmitic acid by an enzyme from wound-healing potato-tuber disks. Phytochem 35:1419–1424

    Article  CAS  Google Scholar 

  • Lotfy S, Javelle F, Negrel J (1996) Purification and characterization of hydroxycinnamoyl-coenzyme A: ω-hydroxypalmitic acid O-hydroxycinnamoyl transferase from tobacco (Nicotiana tabacum L.) cell-suspension cultures. Planta 199:475–480

    Article  CAS  Google Scholar 

  • MacAdam JW, Grabber JH (2002) Relationship of growth cessation with the formation of diferulate cross-links and p-coumaroylated lignins in tall fescue leaf blades. Planta 215:785–793

    Article  CAS  PubMed  Google Scholar 

  • Miki D, Shimamoto K (2004) Simple RNAi vectors for stable and transient suppression of gene function in rice. Plant Cell Physiol 45:445–450

    Article  Google Scholar 

  • Miki D, Itoh R, Shimamato K (2005) RNA silencing of single and multiple members of a gene family of rice. Plant Physiol 138:1903–1913

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mitchell RAC, Dupree P, Shewry PR (2007) A novel bioinformatics approach identifies candidate genes for the synthesis and feruloylation of arabinoxylan. Plant Physiol 144:43–53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Molina I, Beisson YL, Beisson F, Ohlrogge JB, Pollard M (2009) Identification of an Arabidopsis feruloyl-coenzyme A transferase required for suberin synthesis. Plant Physiol 151:1317–1328

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Molinari HB, Pellny TK, Freeman J, Shewry PR, Mitchell RA (2013) Grass cell wall feruloylation: distribution of bound ferulate and candidate gene expression in Brachypodium distachyon. Front Plant Sci 4:50

    Article  PubMed Central  PubMed  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  CAS  PubMed  Google Scholar 

  • Myton KE, Fry SC (1994) Intraprotoplasmic feruloylation of arabinoxylans in Festuca-arundinacea cell-cultures. Planta 193:326–330

    Article  CAS  Google Scholar 

  • Nawrath C (2002) The biopolymers cutin and suberin. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville

    Google Scholar 

  • Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell CR (2006) The TIGR rice genome annotation resource: improvements and new features. Nucleic Acids Res 35:D883–D887

    Article  PubMed Central  PubMed  Google Scholar 

  • Piston F, Uauy C, Fu L, Langston J, Labavitch J, Dubcovsky J (2010) Down-regulation of four putative arabinoxylanferuloyltransferase genes from family PF02458 reduces ester-linked ferulate content in rice cell walls. Planta 231:677–691

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pollard M, Beisson F, Li Y, Ohlrogge JB (2008) Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci 13:236–246

    Article  CAS  PubMed  Google Scholar 

  • Ralph J, Grabber JH, Hatfield RD (1995) Lignin-ferulate cross-links in grasses: active incorporation of ferulate polysaccharide esters into ryegrass lignins. Carbohydr Res 275:167–178

    Article  CAS  Google Scholar 

  • Ralph J, Bunzel M, Marita JM, Hatfield RD, Lu F, Kim H, Schatz PF, Grabber JH, Steinhart H (2004) Peroxidase-dependent crosslinking reactions of p-hydroxycinnamates in plant cell walls. Phytochem Rev 3:79–96

    Article  CAS  Google Scholar 

  • Rautengarten C, Ebert B, Ouellet M et al (2012) Arabidopsis deficient in cutin ferulate encodes a transferase required for feruloylation of ω-hydroxy fatty acids in cutin polyester. Plant Physiol 158:654–665

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rogner HH (2000) Energy resources. In: Goldemberg J, Baker JW, Khatib H, Ba-N’Daw S, Popescu A, Viray FL (eds) World energy assessment; energy and the challenge of sustainability. United Nations Development Programme UNDP, New York, pp 135–171

    Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  CAS  PubMed  Google Scholar 

  • SAS (2010) The SAS System SAS Online Doc HTML Format Version 9.2. SAS Institute Inc, Cary

  • Scalbert A, Monties B, Lallemand JY, Guittet E, Rollando C (1985) Ether linkage between phenolic acids and lignin fractions from wheat straw. Phytochem 24:1359–1362

    Article  CAS  Google Scholar 

  • Schopfer P, Lapierre C, Nolte T (2001) Light-controlled growth of the maize seedling mesocotyl: mechanical cell-wall changes in the elongation zone and related changes in lignification. Physiol Plant 111:83–92

    Article  CAS  Google Scholar 

  • Sorek N, Yeats TH, Szemenyei H, Youngs H, Somerville CR (2014) The implications of lignocellulosic biomass chemical composition for the production of advanced biofuels. Bioscience 64:192–201

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis software version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tan KS, Hoson T, Masuda Y, Kamisaka S (1992) Involvement of cell wall-bound diferulic acid in light-induced decrease in growth-rate and cell-wall extensibility of Oryza coleoptiles. Plant Cell Physiol 33:103–108

    CAS  Google Scholar 

  • The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tuominen LK, Johnson VE, Tsai C-J (2011) Differential phylogenetic expansions in BAHD acyltransferases across five angiosperm taxa and evidence of divergent expression among Populus paralogues. BMC Genomics 12:236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Untergrasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115

    Article  Google Scholar 

  • US DOE (2006) Breaking the biological barriers to cellulosic ethanol: a joint research agenda. Report from the December 2005 workshop, DOE/SC-0095. U.S. Department of Energy Office of Science. www.genomicscience.energy.gov/biofuels/

  • Vogel J (2008) Unique aspects of the grass cell wall. Curr Opin Plant Biol 11:301–307

    Article  CAS  PubMed  Google Scholar 

  • Vogel JP, Garvin DF, Leong OM, Hayden DM (2006) Agrobacterium-mediated transformation and inbred line development in the model grass Brachypodium distachyon. Plant Cell Tissue Organ Cult 84:199–211

    Article  Google Scholar 

  • Withers S, Lu F, Kim H, Zhu Y, Ralph J, Wilkerson CG (2012) Identification of grass-specific enzyme that acylates monolignols with p-coumarate. J Biol Chem 287:8347–8355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • York WS, O’Neill MA (2008) Biochemical control of xylan biosynthesis: which end is up? Curr Opin Plant Biol 11:258265

    Article  Google Scholar 

  • Yoshida-Shimokawa T, Yoshida S, Kakegawa K, Ishii T (2001) Enzymic feruloylation of arabinoxylan-trisaccharide by feruloyl-CoA: arabinoxylan-trisaccharide O-hydroxycinnamoyl from Oryza sativa. Planta 212:470–474

    Article  CAS  PubMed  Google Scholar 

  • Zhao X-Q, Zi L-H, Bai F-W, Lin H-L, Hao X-M, Yue G-J, Ho NWY (2012) Bioethanol from lignocellulosic biomass. Adv Biochem Eng/Biotechnol 128:25–51

    Article  CAS  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 97–166

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the USDA-DOE Plant Feedstock Genomics Research Program (ER64701) for funding and Prof. Phillip Morris for useful discussions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcia M. de O. Buanafina.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 368 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buanafina, M.M.d., Fescemyer, H.W., Sharma, M. et al. Functional testing of a PF02458 homologue of putative rice arabinoxylan feruloyl transferase genes in Brachypodium distachyon . Planta 243, 659–674 (2016). https://doi.org/10.1007/s00425-015-2430-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2430-1

Keywords

Navigation