Skip to main content
Log in

Isolation and identification of a ferulic acid dehydrotrimer from saponified maize bran insoluble fiber

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Following saponification of maize bran insoluble fiber a ferulic acid dehydrotrimer was isolated using Sephadex LH-20 chromatography. Structural identification was carried out using UV-spectroscopy, mass spectrometry and 1D and 2D NMR experiments (1H, 13C, DEPT, COSY, TOCSY, 13C-1H HSQC, HMBC). UV-spectroscopy indicated characteristics of ferulate structures, mass spectrometry showed a trimeric ferulate structure, and the NMR spectra provided diagnostic evidence for its being a 5-5/8-O-4-coupled dehydrotrimer. Ferulic acid dehydrodimers are mainly derived from diferulates which cross-link polysaccharides. Because of the involvement of a 5-5-dehydrodiferulic acid unit in the identified trimer, this novel dehydrotriferulic acid from cereal grain fiber need not imply the cross-linking of three polysaccharide chains; molecular modeling of the ferulate dehydrodimerization in earlier studies showed that the 5-5-diferulate, uniquely, can form intramolecularly. This first identified ferulic acid dehydrotrimer nevertheless reveals that polysaccharide chains can be more extensively cross-linked than previously recognized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3a, b.

Similar content being viewed by others

References

  1. Ishii T (1997) Plant Sci 127:111–127

    Article  CAS  Google Scholar 

  2. Quideau S, Ralph J (1997) J Chem Soc, Perkin Trans 1:2351–2358

    Google Scholar 

  3. Ralph J, Hatfield RD, Grabber JH, Jung HG, Quideau S, Helm RF (1998) Cell wall cross-linking in grasses by ferulates and diferulates. In: Lewis NG, Sarkanen S (eds) Lignin and lignan biosynthesis. American Chemical Society, Washington, D.C., pp 209–236

  4. Hatfield RD, Ralph J, Grabber JH (1999) J Sci Food Agric 79:403–407

    CAS  Google Scholar 

  5. Steinhart H, Bunzel M (in press) Chromatographia

  6. Bunzel M, Allerdings E, Sinnwell V, Ralph J, Steinhart H (2002) Eur Food Res Technol 214:482–488

    Article  CAS  Google Scholar 

  7. Grabber JH, Hatfield RD, Ralph J (1998) J Sci Food Agric 77:193–200

    CAS  Google Scholar 

  8. Ralph J, Grabber JH, Hatfield RD (1995) Carbohydr Res 275:167–178

    Article  CAS  Google Scholar 

  9. Grabber JH, Ralph J, Hatfield RD (1998) J Agric Food Chem 46:2609–2614

    CAS  Google Scholar 

  10. Ralph J, Quideau S, Grabber JH, Hatfield RD (1994) J Chem Soc, Perkin Trans 1: 3485–3498

    Google Scholar 

  11. Boerjan W, Ralph J, Baucher M (in press) Annu Rev Plant Biol

  12. Parr AJ, Waldron KW, Ng A, Parker ML (1996) J Sci Food Agric 71:501–507

    CAS  Google Scholar 

  13. Parr AJ, Ng A, Waldron KW (1997) J Agric Food Chem 45:2468–2471

    Article  CAS  Google Scholar 

  14. Saulnier L, Thibault JF (1999) J Sci Food Agric 79:396–402

    Article  CAS  Google Scholar 

  15. Bunzel M, Ralph J, Marita J, Steinhart H (2000) J Agric Food Chem 48:3166–3169

    Article  CAS  PubMed  Google Scholar 

  16. Bunzel M, Ralph J, Marita JM, Hatfield RD, Steinhart H (2001) J Sci Food Agric 81: 653–660

    CAS  Google Scholar 

  17. Bunzel M, Ralph J, Kim H, Lu F, Ralph SA, Marita JM, Hatfield RD, Steinhart H (2003) J Agric Food Chem 51:1427–1434

    Article  CAS  PubMed  Google Scholar 

  18. Ward G, Hadar Y, Bilkis I, Konstantinovsky L, Dosoretz CG (2001) J Biol Chem 276:18734–18741

    Article  CAS  PubMed  Google Scholar 

  19. Hatfield RD, Ralph J (1999) J Sci Food Agric 79:425–427

    CAS  Google Scholar 

  20. Fry SC, Willis SC, Paterson AEJ (2000) Planta 211:679–692

    CAS  PubMed  Google Scholar 

  21. Willker W, Leibfritz D, Kerssebaum R, Bermel W (1992) Magn Reson Chem 31:287–292

    Google Scholar 

  22. Ruiz-Cabello J, Vuister GW, Moonen CTW, Van Gelderen P, Cohen JS, Van Zijl PCM (1992) J Magn Reson 100:282–302

    CAS  Google Scholar 

  23. Ralph J, Marita JM, Ralph SA, Hatfield RD, Lu F, Ede RM, Peng J, Quideau S, Helm RF, Grabber JH, Kim H, Jimenez–Monteon G, Zhang Y, Jung H-JG, Landucci LL, MacKay JJ, Sederoff RR, Chapple C, Boudet AM (1999) Solution–state NMR of lignins. In: Argyropoulos DS, Rials T (eds) Advances in lignocellulosics characterization. TAPPI, Atlanta, Ga., pp 55–108

  24. Ralph SA, Landucci LL, Ralph J (2003). NMR database of lignin and cell wall model compounds (online). Available via the Internet at http://www.dfrc.ars.usda.gov/software.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirko Bunzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bunzel, M., Ralph, J., Funk, C. et al. Isolation and identification of a ferulic acid dehydrotrimer from saponified maize bran insoluble fiber. Eur Food Res Technol 217, 128–133 (2003). https://doi.org/10.1007/s00217-003-0709-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-003-0709-0

Keywords

Navigation