Skip to main content
Log in

Transcriptome profiling of postharvest strawberry fruit in response to exogenous auxin and abscisic acid

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Auxin and abscisic acid regulate strawberry fruit ripening and senescence through cross-talk of their signal transduction pathways that further modulate the structural genes related to physico-chemical properties of fruit.

The physiological and transcriptomic changes in harvested strawberry fruits in responses to IAA, ABA and their combination were analyzed. Exogenous IAA delayed the ripening process of strawberries after harvest while ABA promoted the postharvest ripening. However, treatment with a combination of IAA and ABA did not slow down nor accelerate the postharvest ripening in the strawberry fruits. At the molecular level, exogenous IAA up regulated the expressions of genes related to IAA signaling, including AUX/IAA, ARF, TOPLESS and genes encoding E3 ubiquitin protein ligase and annexin, and down regulated genes related to pectin depolymerization, cell wall degradation, sucrose and anthocyanin biosyntheses. In contrast, exogenous ABA induced genes related to fruit softening, and genes involved in signaling pathways including SKP1, HSPs, CK2, and SRG1. Comparison of transcriptomes in responses to individual treatments with IAA or ABA or the combination revealed that there were cooperative and antagonistic actions between IAA and ABA in fruit. However, 17 % of the differentially expressed unigenes in response to the combination of IAA and ABA were unique and were not found in those unigenes responding to either IAA or ABA alone. The analyses also found that receptor-like kinases and ubiquitin ligases responded to both IAA and ABA, which seemed to play a pivotal role in both hormones’ signaling pathways and thus might be the cross-talk points of both hormones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ABI3:

Abscisic acid insensitive 3

AIP2:

ABI-interacting protein 2

ARF:

Auxin response factor

ARP:

Auxin-repressed protein

BAG:

Bcl-2 associated athanogene family

CAD:

Cinnamyl alcohol dehydrogenase

CK:

Casein kinase

DGE:

Digital gene expression

GH3:

Indole-3-acetic acid-amido synthetase

HSPs:

Heat-shock proteins

IAA:

Auxin

KO:

KEGG Ortholog database

KOG/COG:

Clusters of orthologous groups of proteins

NCED:

9-cis-epoxycarotenoid dioxygenase

RLKs:

Receptor-like kinases

SKP1:

S-phase kinase-associated proteins 1

VLCFA:

Very-long-chain fatty acid synthesis

XT1:

Xylosyltransferase 1

XTH:

Xyloglucan endotransglucosylase/hydrolase

References

  • Böttcher C, Keyzers RA, Boss PK, Davies C (2010) Sequestration of IAA by the indole-3-acetic acid-amido synthetase GH3-1 in grape berry (Vitis vinifera L.) and the proposed role of IAA conjugation during ripening. J Exp Bot 61:3615–3625

    Article  PubMed  CAS  Google Scholar 

  • Callard D, Axelos M, Mazzolini L (1996) Novel molecular markers for late phases of the growth cycle of Arabidopsis thaliana cell-suspension cultures are expressed during organ senescence. Plant Physiol 112:705–715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Catalá C, Rose JKC, Bennett AB (2000) IAA-regulated genes encoding cell wall-modifying proteins are expressed during early tomato fruit growth. Plant Physiol 122:527–534

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Chen JX, Mao LC, Mi HB, Zhao YY, Ying TJ, Luo ZS (2014) Detachment-accelerated ripening and senescence of strawberry (Fragaria × ananassa Duch. cv. Akihime) fruit and the regulation role of multiple phytohormones. Acta Physiol Plant 36:2441–2451

    Article  CAS  Google Scholar 

  • Doukhanina EV, Chen S, van der Zalm E, Godzik A, Reed J, Dickman MB (2006) Identification and functional characterization of the BAG protein family in Arabidopsis thaliana. J Biol Chem 281:18793–18801

    Article  PubMed  CAS  Google Scholar 

  • Esaka M, Fujisawa K, Goto M, Kisu Y (1992) Regulation of ascorbate oxidase expression in pumpkin by auxin and copper. Plant Physiol 100:231–237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fofana B, Duguid S, Cloutier S (2004) Cloning of fatty acid biosynthetic genes β-ketoacyl CoA synthase, fatty acid elongase, stearoyl-ACP desaturase, and fatty acid desaturase and analysis of expression in the early developmental stages of flax (Linum usitatissimum L.) seeds. Plant Sci 166:1487–1496

    Article  CAS  Google Scholar 

  • García-Hernández M, Murphy A, Taiz L (1998) Metallothioneins 1 and 2 have distinct but overlapping expression patterns in Arabidopsis. Plant Physiol 118:387–397

    Article  PubMed  PubMed Central  Google Scholar 

  • Given NK, Venis MA, Grierson D (1988a) Phenylalanine ammonia-lyase activity and anthocyanin synthesis in ripening strawberry fruit. J Plant Physiol 133:25–30

    Article  CAS  Google Scholar 

  • Given NK, Venis MA, Gierson D (1988b) Hormonal regulation of ripening in the strawberry, a non-climacteric fruit. Planta 174:402–406

    Article  PubMed  CAS  Google Scholar 

  • Gou XP, He K, Yang H, Yuan T, Lin HH, Clouse SD, Li J (2010) Genome-wide cloning and sequence analysis of leucine-rich repeat receptor-like protein kinase genes in Arabidopsis thaliana. BMC Genom 11:19

    Article  CAS  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gray WM, Hellmann H, Dharmasiri S, Estelle M (2002) Role of the Arabidopsis RING-H2 protein RBX1 in RUB modification and SCF function. Plant Cell Online 14:2137–2144

    Article  CAS  Google Scholar 

  • Hu XL, Liu RX, Li YH, Wang W, Tai FJ, Xue RL, Li CH (2010) Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress. Plant Growth Regul 60:225–235

    Article  CAS  Google Scholar 

  • Hubbard NL, Pharr DM, Huber SC (1991) Sucrose phosphate synthase and other sucrose metabolizing enzymes in fruits of various species. Physiol Plant 82:191–196

    Article  CAS  Google Scholar 

  • Jami SK, Clark GB, Ayele BT, Ashe P, Kirti PB (2012) Genome-wide comparative analysis of annexin superfamily in plants. Plos One 7:11

    Google Scholar 

  • Ji K, Chen P, Sun L, Wang YP, Dai SJ, Li Q, Li P, Sun YF, Wu Y, Duan CR, Leng P (2012) Non-climacteric ripening in strawberry fruit is linked to ABA, FaNCED2 and FaCYP707A1. Funct Plant Biol 39:351–357

    Article  CAS  Google Scholar 

  • Jia HF, Chai YM, Li CL, Lu D, Luo JJ, Qin L, Shen YY (2011) Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiol 157:188–199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang YM, Joyce DC (2003) ABA effects on ethylene production, PAL activity, anthocyanin and phenolic contents of strawberry fruit. Plant Growth Regul 39:171–174

    Article  Google Scholar 

  • Jones B, Frasse P, Olmos E, Zegzouti H, Li ZG, Latche A, Pech JC, Bouzayen M (2002) Down-regulation of DR12, an IAA-response-factor homolog, in the tomato results in a pleiotropic phenotype including dark green and blotchy ripening fruit. Plant J 32:603–613

    Article  PubMed  CAS  Google Scholar 

  • Kabbage M, Dickman MB (2008) The BAG proteins: a ubiquitous family of chaperone regulators. Cell Mol Life Sci 65:1390–1402

    Article  PubMed  CAS  Google Scholar 

  • Knee M, Sargent JA, Osborne DJ (1977) Cell-wall metabolism in metabolism in developing strawberry fruits. J Exp Bot 28:377–396

    Article  CAS  Google Scholar 

  • Lee S, Lee EJ, Yang EJ, Lee JE, Park AR, Song WH, Park OK (2004) Proteomic identification of annexins, calcium-dependent membrane binding proteins that mediate osmotic stress and abscisic acid signal transduction in Arabidopsis. Plant Cell 16:1378–1391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lei GJ, Zhu XF, Wang ZW, Dong F, Dong NY, Zheng SJ (2014) Abscisic acid alleviates iron deficiency by promoting root iron reutilization and transport from root to shoot in Arabidopsis. Plant Cell Environ 37:852–863

    Article  PubMed  CAS  Google Scholar 

  • Li B, Dewey C (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:323

    Article  CAS  Google Scholar 

  • Li CJ, Liu ZJ, Zhang QR, Wang RZ, Xiao LT, Ma H, Chong K, Xu YY (2012) SKP1 is involved in abscisic acid signalling to regulate seed germination, stomatal opening and root growth in Arabidopsis thaliana. Plant Cell Environ 35:952–965

    Article  PubMed  CAS  Google Scholar 

  • Li H, Mao WJ, Liu W, Dai HY, Liu YX, Ma Y, Zhang ZH (2013) Deep sequencing discovery of novel and conserved microRNAs in wild type and a white-flesh mutant strawberry. Planta 238:695–713

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Chen J, Lu W (2011) Expression and regulation of the early IAA-responsive Aux/IAA genes during strawberry fruit development. Mol Biol Rep 38:1187–1193

    Article  PubMed  CAS  Google Scholar 

  • Lunkenbein S, Bellido M, Aharoni A, Salentijn EMJ, Kaldenhoff R, Coiner HA, Muñoz-Blanco J, Schwab W (2006) Cinnamate metabolism in ripening fruit. characterization of a UDP-glucose: cinnamate glucosyltransferase from strawberry. Plant Physiol 140:1047–1058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mcatee P, Karim S, Schaffer R, David K (2013) A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Front Plant Sci 4:79

    Article  PubMed  PubMed Central  Google Scholar 

  • Medina-Escobar N, Cardenas J, Munoz-Blanco J, Caballero JL (1998) Cloning and molecular characterization of a strawberry fruit ripening-related cDNA corresponding a mRNA for a low-molecular-weight heat-shock protein. Plant Mol Biol 36:33–42

    Article  PubMed  CAS  Google Scholar 

  • Miszczak A, Forney CF, Prange RK (1995) Development of aroma volatiles and color during postharvest ripening of `Kent’ strawberries. J Am Soc Hortic Sci 120:650–655

    CAS  Google Scholar 

  • Mulekar JJ, Bu Q, Chen F, Huq E (2012) Casein kinase II α subunits affect multiple developmental and stress-responsive pathways in Arabidopsis. Plant J 69:343–354

    Article  PubMed  CAS  Google Scholar 

  • Munne-Bosch S, Muller M (2013) Hormonal cross-talk in plant development and stress responses. Front Plant Sci 4:529

    Article  PubMed  PubMed Central  Google Scholar 

  • OfosuAnim J, Kanayama Y, Yamaki S (1996) Sugar uptake into strawberry fruit is stimulated by abscisic acid and indoleacetic acid. Physiol Plant 97:169–174

    Article  CAS  Google Scholar 

  • Ohlrogge JB, Jaworski JG (1997) Regulation of fatty acid synthesis. Annu Rev Plant Physiol 48:109–136

    Article  CAS  Google Scholar 

  • Ornelas-Paz J, Yahia EM, Ramírez-Bustamante N, Pérez-Martínez JD, Escalante-Minakata MP, Ibarra-Junquera V, Acosta-Muñiz C, Guerrero-Prieto V, Ochoa-Reyes E (2013) Physical attributes and chemical composition of organic strawberry fruit (Fragaria x ananassa Duch, Cv. Albion) at six stages of ripening. Food Chem 138:372–381

    Article  CAS  Google Scholar 

  • Pierre-Jerome E, Moss BL, Nemhauser JL (2013) Tuning the IAA transcriptional response. J Exp Bot 64:2557–2563

    Article  PubMed  CAS  Google Scholar 

  • Reddy ASN, Poovaiah BW (1990) Molecular cloning and sequencing of a cDNA for an IAA-repressed mRNA: correlation between fruit growth and repression of the IAA-regulated gene. Plant Mol Biol 14:127–136

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez MCS, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649

    Article  PubMed  CAS  Google Scholar 

  • Roudier F, Gissot L, Beaudoin F, Haslam R, Michaelson L, Marion J, Molino D, Lima A, Bach L, Morin H, Tellier F, Palauqui JC, Bellec Y, Renne C, Miquel M, DaCosta M, Vignard J, Rochat C, Markham JE, Moreau P, Napier J, Faure JD (2010) Very-long-chain fatty acids are involved in polar IAA transport and developmental patterning in Arabidopsis. Plant Cell 22:364–375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi HY, Li ZH, Zhang YX, Chen L, Xiang DY, Zhang YF (2014) Two pear glutathione S-transferases genes are regulated during fruit development and involved in response to salicylic acid, IAA, and glucose signaling. PloS One 9(2):e89926. doi:10.1371/journal.phone.0089926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shin Y, Ryu JA, Liu RH, Nock JF, Watkins CB (2008) Harvest maturity, storage temperature and relative humidity affect fruit quality, antioxidant contents and activity, and inhibition of cell proliferation of strawberry fruit. Postharvest Biol Technol 49:201–209

    Article  CAS  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100:9440–9445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Symons GM, Chua YJ, Ross JJ, Quittenden LJ, Davies NW, Reid JB (2012) Hormonal changes during non-climacteric ripening in strawberry. J Exp Bot 63:4741–4750

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szemenyei H, Hannon M, Long JA (2008) TOPLESS mediates IAA-dependent transcriptional repression during Arabidopsis embryogenesis. Science 319:1384–1386

    Article  PubMed  CAS  Google Scholar 

  • ten Hove C, Bochdanovits Z, Jansweijer VA, Koning F, Berke L, Sanchez-Perez G, Scheres B, Heidstra R (2011) Probing the roles of LRR RLK genes in Arabidopsis thaliana roots using a custom T-DNA insertion set. Plant Mol Biol 76:69–83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trainotti L, Tadiello A, Casadoro G (2007) The involvement of IAA in the ripening of climacteric fruits comes of age: the hormone plays a role of its own and has an intense interplay with ethylene in ripening peaches. J Exp Bot 58:3299–3308

    Article  PubMed  CAS  Google Scholar 

  • Wang WX, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  PubMed  CAS  Google Scholar 

  • Wang LK, Feng ZX, Wang X, Wang XW, Zhang XG (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138

    Article  PubMed  CAS  Google Scholar 

  • Whitelaw CA, Le Huquet JA, Thurman DA, Tomsett AB (1997) The isolation and characterisation of type II metallothionein-like genes from tomato (Lycopersicon esculentum L.). Plant Mol Biol 33:503–511

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto KT, Mori H, Imaseki H (1992) Novel mRNA sequences induced by indole-3-acetic acid in sections of elongating hypocotyls of mung bean (Vigna radiata). Plant Cell Physiol 33:13–20

    CAS  Google Scholar 

  • Zhang X, Garreton V, Chua NH (2005) The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Genes Dev 19:1532–1543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Basic Research Program (973 program) of China (2013CB127101) and the National Natural Science Foundation of China (31372113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linchun Mao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1

Fig. S1 Length distribution of unigenes (TIFF 1055 kb)

Supplementary material 2

Fig. S2 KEGG classification of unigenes (TIFF 1772 kb)

Supplementary material 3

Fig. S3 KOG classification of unigenes (TIFF 1966 kb)

Supplementary material 4

Fig. S4 GO classification of unigenes (TIFF 3190 kb)

Supplementary material 5

Fig. S5 Correlation analysis of gene expression levels revealed by RT-qPCR and RNA-seq digital data (12 randomly selected unigenes are comp48373_c0, comp49239_c0, comp29094_c0, comp45854_c0, comp44817_c0, comp9725_c0, comp38169_c0, comp44449_c0, comp50216_c0, comp34077_c1, comp54510_c0, comp46511_c0) (TIFF 1078 kb)

Supplementary material 6

Fig. S6 Soluble solid (a), soluble sugar (b) and total anthocyanin (c) contents of strawberry fruits in response to exogenous IAA and ABA. 0, Control, IAA, ABA, IAA+ABA are noted as in the legend to Fig. 1. Lower-case letters (a, b, c, d) on the bar chart indicate the significant differences between different treatments (Duncan’s test, P < 0.05) (TIFF 1840 kb)

Supplementary material 7 (XLS 14 kb)

Supplementary material 8 (DOC 32 kb)

Supplementary material 9 (DOC 28 kb)

Supplementary material 10 (DOC 27 kb)

Supplementary material 11 (XLS 198 kb)

Supplementary material 12 (XLS 166 kb)

Supplementary material 13 (XLS 177 kb)

Supplementary material 14 (XLS 6527 kb)

Supplementary material 15 (XLS 6505 kb)

Supplementary material 16 (XLS 6533 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Mao, L., Lu, W. et al. Transcriptome profiling of postharvest strawberry fruit in response to exogenous auxin and abscisic acid. Planta 243, 183–197 (2016). https://doi.org/10.1007/s00425-015-2402-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2402-5

Keywords

Navigation