Skip to main content
Log in

T-DNA transfer and T-DNA integration efficiencies upon Arabidopsis thaliana root explant cocultivation and floral dip transformation

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

T-DNA transfer and integration frequencies during Agrobacterium-mediated root explant cocultivation and floral dip transformations of Arabidopsis thaliana were analyzed with and without selection for transformation-competent cells. Based on the presence or absence of CRE recombinase activity without or with the CRE T-DNA being integrated, transient expression versus stable transformation was differentiated. During root explant cocultivation, continuous light enhanced the number of plant cells competent for interaction with Agrobacterium and thus the number of transient gene expression events. However, in transformation competent plant cells, continuous light did not further enhance cotransfer or cointegration frequencies. Upon selection for root transformants expressing a first T-DNA, 43–69 % of these transformants showed cotransfer of another non-selected T-DNA in two different light regimes. However, integration of the non-selected cotransferred T-DNA occurred only in 19–46 % of these transformants, indicating that T-DNA integration in regenerating root cells limits the transformation frequencies. After floral dip transformation, transient T-DNA expression without integration could not be detected, while stable T-DNA transformation occurred in 0.5–1.3 % of the T1 seedlings. Upon selection for floral dip transformants with a first T-DNA, 8–34 % of the transformants showed cotransfer of the other non-selected T-DNA and in 93–100 % of them, the T-DNA was also integrated. Therefore, a productive interaction between the agrobacteria and the female gametophyte, rather than the T-DNA integration process, restricts the floral dip transformation frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DSB:

Double-stranded break

GUS:

β-Glucuronidase

P35S:

Cauliflower mosaic virus promoter

References

  • Bechtold N, Jaudeau B, Jolivet S, Maba B, Vezon D, Voisin R, Pelletier G (2000) The maternal chromosome set is the target of the T-DNA in the in planta transformation of Arabidopsis thaliana. Genetics 155:1875–1887

    PubMed  CAS  Google Scholar 

  • Bent A (2006) Arabidopsis thaliana floral dip transformation method. In: Wang K (ed) Agrobacterium protocols. Humana Press, Totowa, pp 87–103

    Google Scholar 

  • Bruyant P, Schaumann A, Djiana R, Morvan C, Balange AP (1996) Effect of light on total proteins and peroxidase activities in the culture medium and in the cell wall fraction of cultured flax cells. Plant Physiol Biochem 34:417–423

    CAS  Google Scholar 

  • Caillot S, Rosiau E, Laplace C, Thomasset B (2009) Influence of light intensity and selection scheme on regeneration time of transgenic flax plants. Plant Cell Rep 28:359–371

    Article  PubMed  CAS  Google Scholar 

  • Caryl AP, Jones GH, Franklin FCH (2003) Dissecting plant meiosis using Arabidopsis thaliana mutants. J Exp Bot 54:25–38

    Article  PubMed  CAS  Google Scholar 

  • Cheng M, Lowe BA, Spencer TM, Ye X, Armstrong CL (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell Dev Biol-Plant 40:31–45

    Article  Google Scholar 

  • Chilton M-DM, Que Q (2003) Targeted integration of T-DNA into the tobacco genome at double-stranded breaks: new insights on the mechanism of T-DNA integration. Plant Physiol 133:956–965

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Dale EC, Ow DW (1990) Intra- and intermolecular site-specific recombination in plant cells mediated by bacteriophage P1 recombinase. Gene 91:79–85

    Article  PubMed  CAS  Google Scholar 

  • Dale EC, Ow DW (1991) Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci USA 88:10558–10562

    Article  PubMed  CAS  Google Scholar 

  • De Buck S, Jacobs A, Van Montagu M, Depicker A (1998) Agrobacterium tumefaciens transformation and cotransformation frequencies of Arabidopsis thaliana root explants and tobacco protoplasts. Mol Plant–Microbe Interact 11:449–457

    Article  PubMed  Google Scholar 

  • De Buck S, Jacobs A, Van Montagu M, Depicker A (1999) The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integration. Plant J 20:295–304

    Article  PubMed  Google Scholar 

  • De Buck S, De Wilde C, Van Montagu M, Depicker A (2000) Determination of the T-DNA transfer and the T-DNA integration frequencies upon cocultivation of Arabidopsis thaliana root explants. Mol Plant-Microbe Interact 13:658–665

    Article  PubMed  Google Scholar 

  • De Buck S, Windels P, De Loose M, Depicker A (2004) Single-copy T-DNAs integrated at different positions in the Arabidopsis genome display uniform and comparable β-glucuronidase accumulation levels. Cell Mol Life Sci 61:2632–2645

    Article  PubMed  Google Scholar 

  • De Buck S, Peck I, De Wilde C, Marjanac G, Nolf J, De Paepe A, Depicker A (2007) Generation of single-copy T-DNA transformants in Arabidopsis by the CRE/loxP recombination-mediated resolution system. Plant Physiol 145:1171–1182

    Article  PubMed  Google Scholar 

  • De Buck S, Podevin N, Nolf J, Jacobs A, Depicker A (2009) The T-DNA integration pattern in Arabidopsis transformants is highly determined by the transformed target cell. Plant J 60:134–145

    Article  PubMed  Google Scholar 

  • De Clercq J, Zambre M, Van Montagu M, Dillen W, Angenon G (2002) An optimized Agrobacterium-mediated transformation procedure for Phaseolus acutifolius A. Gray. Plant Cell Rep 21:333–340

    Article  Google Scholar 

  • De Neve M, De Buck S, Jacobs A, Van Montagu M, Depicker A (1997) T-DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from co-integration of separate T-DNAs. Plant J 11:15–29

    Article  PubMed  Google Scholar 

  • De Paepe A, De Buck S, Hoorelbeke K, Nolf J, Peck I, Depicker A (2009) High frequency of single-copy T-DNA transformants produced by floral dip in CRE-expressing Arabidopsis plants. Plant J 59:517–527

    Article  PubMed  Google Scholar 

  • De Paepe A, De Buck S, Nolf J, Van Lerberge E, Depicker A (2013) Site-specific T-DNA integration in Arabidopsis thaliana mediated by the combined action of CRE recombinase and ϕC31 integrase. Plant J 75:172–184. doi:10.1111/tpj.12202

    Article  PubMed  Google Scholar 

  • Desfeux C, Clough SJ, Bent AF (2000) Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol 123:895–904

    Article  PubMed  CAS  Google Scholar 

  • Francis KE, Spiker S (2005) Identification of Arabidopsis thaliana transformants without selection reveals a high occurrence of silenced T-DNA integrations. Plant J 41:464–477

    Article  PubMed  CAS  Google Scholar 

  • Gelvin SB (2010) Plant proteins involved in Agrobacterium-mediated genetic transformation. Annu Rev Phytopathol 48:45–68

    Article  PubMed  CAS  Google Scholar 

  • Ghedira R, De Buck S, Nolf J, Depicker A (2013) The efficiency of Arabidopsis thaliana floral dip transformation is determined not only by the Agrobacterium strain used but also by the physiology and the ecotype of the dipped plant. Mol Plant Microbe Interact 26:823–832. doi:10.1094/MPMI-11-12-0267-R

    Article  PubMed  CAS  Google Scholar 

  • Grelon M, Vezon D, Gendrot G, Pelletier G (2001) AtSPO11-1 is necessary for efficient meiotic recombination in plants. EMBO J 20:589–600

    Article  PubMed  CAS  Google Scholar 

  • Gupta SK, Singh PK, Sawant SV, Chaturvedi R, Tuli R (2000) Effect of light intensity on in vitro multiple shoot induction and regeneration of cotton (Gossypium hirsutum L. cv Khandawa-2). Indian J Exp Biol 38:399–401

    PubMed  CAS  Google Scholar 

  • Hecht V, Vielle-Calzada J-P, Hartog MV, Schmidt EDL, Boutilier K, Grossniklaus U, de Vries SC (2001) The Arabidopsis somatic embryogenesis receptor kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127:803–816

    Article  PubMed  CAS  Google Scholar 

  • Kapila J, De Rycke R, Van Montagu M, Angenon G (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108

    Article  CAS  Google Scholar 

  • Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol General Genet 204:383–396

    Article  CAS  Google Scholar 

  • Liu CN, Li XQ, Gelvin SB (1992) Multiple copies of virG enhance the transient transformation of celery, carrot and rice tissues by Agrobacterium tumefaciens. Plant Mol Biol 20:1071–1087

    Article  PubMed  CAS  Google Scholar 

  • Marjanac G, De Paepe A, Peck I, Jacobs A, De Buck S, Depicker A (2008) Evaluation of CRE-mediated excision approaches in Arabidopsis thaliana. Transgenic Res 17:239–250

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Trujillo M, Limones-Briones V, Cabrera-Ponce JL, Herrera-Estrella L (2004) Improving transformation efficiency of Arabidopsis thaliana by modifying the floral dip method. Plant Mol Biol Rep 22:63–70

    Article  CAS  Google Scholar 

  • Martín-Urdíroz N, Garrido-Gala J, Martín J, Barandiaran X (2004) Effect of light on the organogenic ability of garlic roots using a one-step in vitro system. Plant Cell Rep 22:721–724

    Article  PubMed  Google Scholar 

  • Maximova SN, Dandekar AM, Guiltinan MJ (1998) Investigation of Agrobacterium-mediated transformation of apple using green fluorescent protein: high transient expression and low stable transformation suggest that factors other than T-DNA transfer are rate-limiting. Plant Mol Biol 37:549–559

    Article  PubMed  CAS  Google Scholar 

  • McCullen CA, Binns AN (2006) Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol 22:101–127

    Article  PubMed  CAS  Google Scholar 

  • Mysore KS, Kumar CTR, Gelvin SB (2000) Arabidopsis ecotypes and mutants that are recalcitrant to Agrobacterium root transformation are susceptible to germ-line transformation. Plant J 21:9–16

    Article  PubMed  CAS  Google Scholar 

  • Oberpichler I, Rosen R, Rasouly A, Vugman M, Ron EZ, Lamparter T (2008) Light affects motility and infectivity of Agrobacterium tumefaciens. Environ Microbiol 10:2020–2029

    Article  PubMed  CAS  Google Scholar 

  • Oltmanns H, Frame B, Lee L-Y, Johnson S, Li B, Wang K, Gelvin SB (2010) Generation of backbone-free, low transgene copy plants by launching T-DNA from the Agrobacterium chromosome. Plant Physiol 152:1158–1166

    Article  PubMed  CAS  Google Scholar 

  • Opabode JT (2006) Agrobacterium-mediated transformation of plants: emerging factors that influence efficiency. Biotechnol Mol Biol Rev 1:12–20

    Google Scholar 

  • Pitzschke A, Hirt H (2010) New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation. EMBO J 29:1021–1032

    Article  PubMed  CAS  Google Scholar 

  • Poirier Y, Ventre G, Nawrath C (2000) High-frequency linkage of co-expressing T-DNA in transgenic Arabidopsis thaliana transformed by vacuum-infiltration of Agrobacterium tumefaciens. Theor Appl Genet 100:487–493

    Article  CAS  Google Scholar 

  • Potrykus I (1991) Gene transfer to plants: assessment of published approaches and results. Annu Rev Plant Physiol Plant Mol Biol 42:205–225

    Article  CAS  Google Scholar 

  • Radchuk VV, Van DT, Klocke E (2005) Multiple gene co-integration in Arabidopsis thaliana predominantly occurs in the same genetic locus after simultaneous in planta transformation with distinct Agrobacterium tumefaciens strains. Plant Sci 168:1515–1523

    Article  CAS  Google Scholar 

  • Salomon S, Puchta H (1998) Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J 17:6086–6095

    Article  PubMed  CAS  Google Scholar 

  • Sangwan RS, Bourgeois Y, Sangwan-Norreel BS (1991) Genetic transformation of Arabidopsis thaliana zygotic embryos and identification of critical parameters influencing transformation efficiency. Mol General Genet 230:475–485

    Article  CAS  Google Scholar 

  • Sangwan RS, Bourgeois Y, Brown S, Vasseur G, Sangwan-Norreel B (1992) Characterization of competent cells and early events of Agrobacterium-mediated genetic transformation in Arabidopsis thaliana. Planta 188:439–456

    Article  PubMed  CAS  Google Scholar 

  • Shen WH, Escudero J, Schlappi M, Ramos C, Hohn B, Koukolikova-Nicola Z (1993) T-DNA transfer to maize cells: histochemical investigation of β-glucuronidase activity in maize tissues. Proc Natl Acad Sci USA 90:1488–1492

    Article  PubMed  CAS  Google Scholar 

  • Singer K, Shiboleth YM, Li J, Tzfira T (2012) Formation of complex extrachromosomal T-DNA structures in Agrobacterium tumefaciens-infected plants. Plant Physiol 160:511–522

    Article  PubMed  CAS  Google Scholar 

  • Stuitje AR, Verbree EC, van der Linden KH, Mietkiewska EM, Nap J-P, Kneppers TJA (2003) Seed-expressed fluorescent proteins as versatile tools for easy (co)transformation and high-throughput functional genomics in Arabidopsis. Plant Biotechnol J 1:301–309

    Article  PubMed  CAS  Google Scholar 

  • Tzfira T, Citovsky V (2000) From host recognition to T-DNA integration: the function of bacterial and plant genes in the Agrobacterium-plant cell interaction. Mol Plant Pathol 1:201–212

    Article  PubMed  CAS  Google Scholar 

  • Tzfira T, Citovsky V (2006) Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol 17:147–154

    Article  PubMed  CAS  Google Scholar 

  • Tzfira T, Vaidya M, Citovsky V (2002) Increasing plant susceptibility to Agrobacterium infection by overexpression of the Arabidopsis nuclear protein VIP1. Proc Natl Acad Sci USA 99:10435–10440

    Article  PubMed  CAS  Google Scholar 

  • Tzfira T, Frankman LR, Vaidya M, Citovsky V (2003) Site-specific integration of Agrobacterium tumefaciens T-DNA via double-stranded intermediates. Plant Physiol 133:1011–1023

    Article  PubMed  CAS  Google Scholar 

  • Valvekens D, Montagu MV, Van Lijsebettens M (1988) Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci USA 85:5536–5540

    Article  PubMed  CAS  Google Scholar 

  • Van Ex F, Verweire D, Claeys M, Depicker A, Angenon G (2009) Evaluation of seven promoters to achieve germline directed Cre-lox recombination in Arabidopsis thaliana. Plant Cell Rep 28:1509–1520

    Article  PubMed  Google Scholar 

  • Veena Jiang H, Doerge RW, Gelvin SB (2003) Transfer of T-DNA and Vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression. Plant J 35:219–236

    Article  PubMed  CAS  Google Scholar 

  • Villemont E, Dubois F, Sangwan RS, Vasseur G, Bourgeois Y, Sangwan-Norreel BS (1997) Role of the host cell cycle in the Agrobacterium-mediated genetic transformation of Petunia: evidence of an S-phase control mechanism for T-DNA transfer. Planta 201:160–172

    Article  CAS  Google Scholar 

  • Wiktorek-Smagur A, Hnatuszko-Konka K, Kononowicz AK (2009) Flower bud dipping or vacuum infiltration—two methods of Arabidopsis thaliana transformation. Russ J Plant Physiol 56:560–568

    Article  CAS  Google Scholar 

  • Windels P, De Buck S, Van Bockstaele E, De Loose M, Depicker A (2003) T-DNA integration in Arabidopsis chromosomes. Presence and origin of filler DNA sequences. Plant Physiol 133:2061–2068

    Article  PubMed  CAS  Google Scholar 

  • Windels P, De Buck S, Depicker A (2008) Agrobacterium tumefaciens-mediated transformation patterns: Patterns of T-DNA integration into the host genome. In: Tzfira T, Citovsky V (eds) Agrobacterium: from biology to biotechnology. Springer, New York, pp 441–481

    Chapter  Google Scholar 

  • Ye G-N, Stone D, Pang S-Z, Creely W, Gonzalez K, Hinchee M (1999) Arabidopsis ovule is the target for Agrobacterium in planta vacuum infiltration transformation. Plant J 19:249–257

    Article  PubMed  Google Scholar 

  • Zambre M, Terryn N, De Clercq J, De Buck S, Dillen W, Van Montagu M, Van Der Straeten D, Angenon G (2003) Light strongly promotes gene transfer from Agrobacterium tumefaciens to plant cells. Planta 216:580–586

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Karolina Komorowska, Anni Jacobs, Marion Naudts and Jonah Nolf for practical assistance, Marnik Vuylsteke for statistical analysis, and Martine De Cock and Annick Bleys for help in preparing the manuscript. This work was supported by grants from the Flemish Community and the Research Foundation Flanders (G.021106). F.V.E. was indebted to the Agency for Innovation through Science and Technology in Flanders for a predoctoral fellowship.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann Depicker.

Additional information

R. Ghedira and S. De Buck contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghedira, R., De Buck, S., Van Ex, F. et al. T-DNA transfer and T-DNA integration efficiencies upon Arabidopsis thaliana root explant cocultivation and floral dip transformation. Planta 238, 1025–1037 (2013). https://doi.org/10.1007/s00425-013-1948-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-013-1948-3

Keywords

Navigation