Skip to main content
Log in

Molecular characterization of a seed transmitted clavicipitaceous fungus occurring on dicotyledoneous plants (Convolvulaceae)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Ergoline alkaloids (syn. ergot alkaloids) are constituents of clavicipitaceous fungi (Ascomycota) and of one particular dicotyledonous plant family, the Convolvulaceae. While the biology of fungal ergoline alkaloids is rather well understood, the evolutionary and biosynthetic origin of ergoline alkaloids within the family Convolvulaceae is unknown. To investigate the possible origin of ergoline alkaloids from a plant-associated fungus, 12 endophytic fungi and one epibiotic fungus were isolated from an ergoline alkaloid-containing Convolvulaceae plant, Ipomoea asarifolia Roem. & Schult. Phylogenetic trees constructed from 18S rDNA genes as well as internal transcribed spacer (ITS) revealed that the epibiotic fungus belongs to the family Clavicipitaceae (Ascomycota) whereas none of the endophytic fungi does. In vitro and in vivo cultivation on intact plants gave no evidence that the endophytic fungi are responsible for the accumulation of ergoline alkaloids in I. asarifolia whereas the epibiotic clavicipitaceous fungus very likely is equipped with the genetic material to synthesize these compounds. This fungus resisted in vitro and in vivo cultivation and is seed transmitted. Several observations strongly indicate that this plant-associated fungus and its hitherto unidentified relatives occurring on different Convolvulaceae plants are responsible for the isolated occurrence of ergoline alkaloids in Convolvulaceae. This is the first report of an ergot alkaloid producing clavicipitaceous fungus associated with a dicotyledonous plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ITS:

Internal transcribed spacer

18S rDNA:

Small subunit ribosomal DNA

SSCP:

Single strand conformation polymorphism

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  PubMed  CAS  Google Scholar 

  • Arnold AE, Mejia LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA 100:15649–15654

    Article  PubMed  CAS  Google Scholar 

  • Bacon CW (1985) A chemically defined medium for the growth an synthesis of ergot alkaloids by species of Balansia. Mycologia 77:418–423

    Article  CAS  Google Scholar 

  • Bassam BJ, Caetano-Anolles G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    Article  PubMed  CAS  Google Scholar 

  • Boysen ME (1999) Molecular identification and quantification of the Penicillium roqueforti group. Doctoral Thesis (Swedish University of Agricultural Sciences, Uppsala, Sweden) ISSN 1401–6249

  • Carlile MJ, Watkinson SC, Gooday GW (2001) The fungi. 2nd edn, Academic, San Diego

    Google Scholar 

  • Cenis J (1992) Rapid extraction of fungal DNA for PCR amplification. Nucleic Acid Res 20:9

    Google Scholar 

  • Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:99–127

    Article  Google Scholar 

  • Coyle CM, Panaccione DG (2005) An ergot alkaloid gene and clustered hypothetical genes from Aspergillus fumigatus. Appl Environ Microbiol 71:3112–3118

    Article  PubMed  CAS  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: Version II. Plant Mol Biol Rep1:19–21

    Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basiodiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  PubMed  CAS  Google Scholar 

  • Gentile A, Rossi MS, Cabral D, Craven KD, Schardl CL (2005) Origin, divergence, and phylogeny of epichloë endophytes of native Argentine grasses. Mol Phylogenet Evol 35:196–208

    Article  PubMed  CAS  Google Scholar 

  • Gröger D, Floss HG (1998) Biochemistry of ergot alkaloids—achievements and challenges. In: Cordell GA (ed) The alkaloids, vol 50. Academic, San Diego, pp 171–218

  • Gröger D, Mothes K, Floss HG, Weygand F (1963) Zur Biogenese von Ergolin-Derivaten in Ipomoea rubro-caerulea Hook. Z Naturforsch 18b:1123–1124

    Google Scholar 

  • Hofmann A, Tscherter H (1960) Isolierung von Lysergsäure-Alkaloiden aus der mexikanischen Zauberdroge Ololuiqui (Rivea corymbosa (L.) Hall. F.) Experientia XVI/9:414

    Article  Google Scholar 

  • Jenett-Siems K, Kaloga M, Eich E (1994) Ergobalansine/ergobalansinine, a proline-free peptide-type alkaloid of the fungal genus Balansia is a constituent of Ipomoea piurensis. J Nat Prod 57:1304–1306

    Article  CAS  Google Scholar 

  • Jenett-Siems K, Kaloga M, Eich E (2004) Ergobalansine/Ergobalasinine, a proline-free peptide type alkaloid of the fungal genus Balansia is a constituent of Ipomoea piurensis. J Nat Prod 67:2160

    Article  CAS  Google Scholar 

  • Kappe R, Fauser C, Okeke CN, Maiwald M (1996) Universal fungus-specific primer systems and group-specific hybridization oligonucleotides for 18SrDNA. Mycoses 39:25–30

    Article  PubMed  CAS  Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde–glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137–138

    Google Scholar 

  • Kucht S, Groß J, Hussein Y, Grothe T, Keller U, Basar S, König WA, Steiner U, Leistner E (2004) Elimination of ergoline alkaloids following treatment of Ipomoea asarifolia (Convolvulaceae) with fungicides. Planta 219:619–625

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Lane GA, Christensen MJ, Miles CO (2000) Coevolution of fungal endophytes with grasses: the significance of secondary metabolites. In: Bacon CW, White JF Jr (eds) Microbial endophytes. Dekker, New York, pp 341–388

    Google Scholar 

  • Latch GCM, Christensen MJ (1985) Artificial infection of grasses with endophytes. Ann Appl Biol 107:17–24

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ohmomo S, Sato T, Utagawa T, Abe M (1975) Isolation of festuclavine and three new indole alkaloids, roquefortine A, B and C from the cultures of Penicillium roqueforti. Agric Biol Chem 39:1333–1334

    CAS  Google Scholar 

  • Petrini O, Sieber TN, Toti L, Viret O (1992) Ecology, metabolite production, and substrate utilization in endophytic fungi. Nat Toxins 1:185–186

    Article  PubMed  CAS  Google Scholar 

  • Reddy PV, Bergen MS, Patel R, White JF Jr (1998) An examination of molecular phylogeny and morphology of the grass endophyte Balansia claviceps and similar species. Mycologia 90:108–117

    Article  CAS  Google Scholar 

  • Schulz B, Wanke U, Draeger S, Aust HJ (1993) Endophytes from herbaceous plants and shrubs—effectiveness of surface sterilization methods. Mycol Res 97:1447–1450

    Article  Google Scholar 

  • Scott PM, Merrien M-A, Polonsky J (1976) Roquefortine and Isofumigaclavine A, metabolites from Penicillium roqueforti. Experientia 32:140–142

    Article  CAS  Google Scholar 

  • Spiering MS, Lane GA, Christensen MJ, Schmid J (2005) Distribution of the fungal endophyte Neotyphodium lolii is not a major determinant of the distribution of fungal alkaloids in Lolium perenne plants. Phytochemistry 66:195–202

    Article  PubMed  CAS  Google Scholar 

  • Svitkina TM, Shevelev AA, Bershadsky AD, Gelfand VI (1984) Cytoskeleton of mouse embryo fibroblasts. Electron microscopy of platinum replicas. Eur J Cell Biol 34:64–74

    PubMed  CAS  Google Scholar 

  • Tsai H-F, Wang H, Gebler JC, Poulter CD, Schardl CL (1995) The Claviceps purpurea gene encoding dimethylallyltryptophan synthase. The committed step for ergot alkaloid biosynthesis. Biochem Biophys Res Commun 216:119–125

    Article  PubMed  CAS  Google Scholar 

  • Tudzynski P, Hölter K, Correia T, Arntz C, Grammel N, Keller U (1999) Evidence for an ergot alkaloid gene cluster in Claviceps purpurea. Mol Gen Genet 261:133–141

    Article  PubMed  CAS  Google Scholar 

  • Tudzynski P, Correia T, Keller U (2001) Biotechnology and genetics of ergot alkaloids. Appl Microbiol Biotechnol 57:593–605

    Article  PubMed  CAS  Google Scholar 

  • Unsöld IA, Li S-M (2005) Overproduction, purification and characterization of FgaPT2, a dimethylallyltryptophan synthase from Aspergillus fumigatus. Microbiology 151:1499–1505

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Machado C, Panaccione DG, Tsai H-F, Schardl CL (2004) The determinant step in ergot alkaloid biosynthesis by an endophyte of perennial ryegrass. Fungal Genet Biol 41:189–198

    Article  PubMed  CAS  Google Scholar 

  • White JF Jr, Bacon CW, Hywel-Jones NL , Spatafora JW (2003) Clavicipitalean fungi, evolutionary biology, chemistry, biocontrol, and cultural impacts. In: Bennett JW, Lemke PA (eds), Mycology series, vol 19, Dekker, New York

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Detlef Gröger (Halle, Germany) for authentic samples of ergoline alkaloids, Dirk Schmitz for growing the plants and the Deutsche Forschungsgemeinschaft for financial support (to E.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eckhard Leistner.

Additional information

Dedicated to Dr. Dr. h. c. mult. Albert Hofmann, the great pioneer of ergot research, on the occasion of his 100th birthday

Data deposition: The sequences reported in this paper have been deposited in the GenBank (accession numbers are given in the text and in Fig. 3)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steiner, U., Ahimsa-Müller, M.A., Markert, A. et al. Molecular characterization of a seed transmitted clavicipitaceous fungus occurring on dicotyledoneous plants (Convolvulaceae). Planta 224, 533–544 (2006). https://doi.org/10.1007/s00425-006-0241-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0241-0

Keywords

Navigation