Skip to main content

Advertisement

Log in

Role of endothelin-1 for the regulation of renal pelvic function

  • Organ physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Endothelin-1 (ET-1) stimulates contractions in isolated rat renal pelves. The signal transduction mechanisms that mediate ET-1-induced renal pelvic contractions and the role of ET-1 for the in vivo regulation of renal pelvic function are not well characterized. We tested if ET-1 stimulates contractions in murine and human renal pelves, if ET-1 activates the renal pelvic RhoA/ROCK pathway, and if low renal ET-1 formation or ET receptor blockade reduce renal pelvic contractile activity. ET-1 increased contraction frequency and force in murine renal pelves. The majority of human renal pelvic tissue samples showed tonic contractions in response to ET-1. Seven out of 20 human tissue samples showed phasic contractions. In four samples, they were elicited by ET-1 at 10–33 nmol/l. ET-1 increased renal pelvic RhoA-GTP content and myosin phosphatase target subunit 1 phosphorylation in isolated rat renal pelves. Renal pelvic contraction frequency (29 ± 2 vs. 29 ± 3 min−1) and renal pelvic pressure (7.1 ± 0.9 vs. 5.9 ± 1.7 mmHg) were similar in collecting duct-specific ET-1 knockout mice and in ET-1 floxed controls in vivo. ET-1 sensitivity of isolated renal pelves was similar in both groups. ET receptor blockade did not significantly affect pelvic contraction frequency and pressure in rats. We conclude that ET-1 stimulates phasic contractions in murine, rat, and, to a lesser extent, in human renal pelves. ET-1 activates the RhoA/ROCK pathway in the renal pelvic wall. Endogenous, kidney-derived ET-1 does not play a major role for the regulation of renal pelvic contractions in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ahn D, Ge Y, Stricklett PK, Gill P, Taylor D, Hughes AK, Yanagisawa M, Miller L, Nelson RD, Kohan DE (2004) Collecting duct-specific knockout of endothelin-1 causes hypertension and sodium retention. J Clin Invest 114:504–511. doi:10.1172/JCI21064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Arms L, Vizzard MA (2011) Neuropeptides in lower urinary tract function. Handb Exp Pharmacol :395–423 doi:10.1007/978-3-642-16499-6_19

  3. Boesen EI, Pollock DM (2010) Cooperative role of ETA and ETB receptors in mediating the diuretic response to intramedullary hyperosmotic NaCl infusion. Am J Physiol Renal Physiol 299:F1424–F1432. doi:10.1152/ajprenal.00015.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Borysova L, Shabir S, Walsh MP, Burdyga T (2011) The importance of Rho-associated kinase-induced Ca2+ sensitization as a component of electromechanical and pharmacomechanical coupling in rat ureteric smooth muscle. Cell Calcium 50:393–405. doi:10.1016/j.ceca.2011.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Clozel M, Breu V, Gray GA, Kalina B, Loffler BM, Burri K, Cassal JM, Hirth G, Muller M, Neidhart W et al (1994) Pharmacological characterization of bosentan, a new potent orally active nonpeptide endothelin receptor antagonist. J Pharmacol Exp Ther 270:228–235

    CAS  PubMed  Google Scholar 

  6. Correa MV, Nolly MB, Caldiz CI, de Cingolani GE, Cingolani HE, Ennis IL (2014) Endogenous endothelin 1 mediates angiotensin II-induced hypertrophy in electrically paced cardiac myocytes through EGFR transactivation, reactive oxygen species and NHE-1. Pflugers Arch 466:1819–1830. doi:10.1007/s00424-013-1413-y

    CAS  PubMed  Google Scholar 

  7. Dixon JS, Gosling JA (1970) Electron microscopic observations on the renal caliceal wall in the rat. Z Zellforsch Mikrosk Anat 103:328–340

    Article  CAS  PubMed  Google Scholar 

  8. Dixon JS, Gosling JA (1982) The musculature of the human renal calices, pelvis and upper ureter. J Anat 135:129–137

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Donato AJ, Lesniewski LA, Stuart D, Walker AE, Henson G, Sorensen L, Li D, Kohan DE (2014) Smooth muscle specific disruption of the endothelin-A receptor in mice reduces arterial pressure, and vascular reactivity and affects vascular development. Life Sci 118:238–243. doi:10.1016/j.lfs.2013.12.209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ge Y, Ahn D, Stricklett PK, Hughes AK, Yanagisawa M, Verbalis JG, Kohan DE (2005) Collecting duct-specific knockout of endothelin-1 alters vasopressin regulation of urine osmolality. Am J Physiol Renal Physiol 288:F912–F920. doi:10.1152/ajprenal.00432.2004

    Article  CAS  PubMed  Google Scholar 

  11. Girchev R, Markova P, Vuchidolova V (2004) Influence of nonselective ET(A)/ET(B) receptor blockade on renal function in conscious rats: effects of renal denervation. J Physiol Pharmacol 55:381–389

    CAS  PubMed  Google Scholar 

  12. Grisk O (2013) Potential benefits of rho-kinase inhibition in arterial hypertension. Curr Hypertens Rep 15:506–513. doi:10.1007/s11906-013-0373-0

    Article  CAS  PubMed  Google Scholar 

  13. Grisk O, Packebusch M, Steinbach AC, Schluter T, Kopp UC, Rettig R (2010) Endothelin-1-induced activation of rat renal pelvic contractions depends on cyclooxygenase-1 and Rho kinase. Am J Physiol Regul Integr Comp Physiol 299:R1602–R1609. doi:10.1152/ajpregu.00452.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hashitani H, Lang RJ, Mitsui R, Mabuchi Y, Suzuki H (2009) Distinct effects of CGRP on typical and atypical smooth muscle cells involved in generating spontaneous contractions in the mouse renal pelvis. Br J Pharmacol 158:2030–2045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hurtado R, Bub G, Herzlinger D (2010) The pelvis-kidney junction contains HCN3, a hyperpolarization-activated cation channel that triggers ureter peristalsis. Kidney Int 77:500–508. doi:10.1038/ki.2009.483

    Article  CAS  PubMed  Google Scholar 

  16. Jankovic SM, Jankovic SV, Stojanovic V, Stojadinovic D, Stojadinovic M, Canovic D, Stefanovic S (2011) Contractile effects of endothelins on isolated human ureter. Physiol Res 60:933–939

    CAS  PubMed  Google Scholar 

  17. Janssen LJ, Killian K (2006) Airway smooth muscle as a target of asthma therapy: history and new directions. Respir Res 7:123. doi:10.1186/1465-9921-7-123

    Article  PubMed  PubMed Central  Google Scholar 

  18. Just A, Olson AJ, Arendshorst WJ (2004) Dual constrictor and dilator actions of ET(B) receptors in the rat renal microcirculation: interactions with ET(A) receptors. Am J Physiol Renal Physiol 286:F660–F668. doi:10.1152/ajprenal.00368.2003

    Article  CAS  PubMed  Google Scholar 

  19. Khodorova A, Montmayeur JP, Strichartz G (2009) Endothelin receptors and pain. J Pain 10:4–28. doi:10.1016/j.jpain.2008.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Klinger F, Grimm R, Steinbach A, Tanneberger M, Kunert-Keil C, Rettig R, Grisk O (2008) Low NaCl intake elevates renal medullary endothelin-1 and endothelin A (ETA) receptor mRNA but not the sensitivity of renal Na + excretion to ETA receptor blockade in rats. Acta Physiol (Oxf) 192:429–442. doi:10.1111/j.1748-1716.2007.01751.x

    Article  CAS  Google Scholar 

  21. Koenen A, Steinbach A, Schaper K, Zimmermann U, Miehe B, Kurt B, Rettig R, Grisk O (2016) Effects of renal denervation on renal pelvic contractions and connexin expression in rats. Acta Physiol (Oxf) 216:240–253. doi:10.1111/apha.12612

    Article  CAS  Google Scholar 

  22. Kohan DE (2010) Endothelin, hypertension and chronic kidney disease: new insights. Curr Opin Nephrol Hypertens 19:134–139. doi:10.1097/MNH.0b013e328335f91f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kopp UC, Grisk O, Cicha MZ, Smith LA, Steinbach A, Schluter T, Mahler N, Hokfelt T (2009) Dietary sodium modulates the interaction between efferent renal sympathetic nerve activity and afferent renal nerve activity: role of endothelin. Am J Physiol Regul Integr Comp Physiol 297:R337–R351. doi:10.1152/ajpregu.91029.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lang RJ, Davidson ME, Exintaris B (2002) Pyeloureteral motility and ureteral peristalsis: essential role of sensory nerves and endogenous prostaglandins. Exp Physiol 87:129–146

    Article  CAS  PubMed  Google Scholar 

  25. Lang RJ, Hashitani H, Tonta MA, Bourke JL, Parkington HC, Suzuki H (2010) Spontaneous electrical and Ca2+ signals in the mouse renal pelvis that drive pyeloureteric peristalsis. Clin Exp Pharmacol Physiol 37:509–515. doi:10.1111/j.1440-1681.2009.05226.x

    Article  CAS  PubMed  Google Scholar 

  26. Lang RJ, Tonta MA, Zoltkowski BZ, Meeker WF, Wendt I, Parkington HC (2006) Pyeloureteric peristalsis: role of atypical smooth muscle cells and interstitial cells of Cajal-like cells as pacemakers. J Physiol 576:695–705. doi:10.1113/jphysiol.2006.116855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu C, Zuo J, Janssen LJ (2006) Regulation of airway smooth muscle RhoA/ROCK activities by cholinergic and bronchodilator stimuli. Eur Respir J 28:703–711. doi:10.1183/09031936.06.00025506

    Article  PubMed  Google Scholar 

  28. Maggi CA, Giuliani S, Patacchini R, Barbanti G, Turini D, Meli A (1990) Contractile responses of the human urinary bladder, renal pelvis and renal artery to endothelins and sarafotoxin S6b. Gen Pharmacol 21:247–249

    Article  CAS  PubMed  Google Scholar 

  29. Maggi CA, Santicioli P, Del Bianco E, Giuliani S (1992) Local motor responses to bradykinin and bacterial chemotactic peptide formyl-methionyl-leucyl-phenylalanine (FMLP) in the guinea-pig isolated renal pelvis and ureter. J Urol 148:1944–1950

    CAS  PubMed  Google Scholar 

  30. Miller J, Hesse M, Diemer T, Haenze J, Knerr I, Rascher W, Weidner W (2004) Congenital unilateral ureteropelvic junction obstruction of the rat: a useful animal model for human ureteropelvic junction obstruction? Urology 63:190–194

    Article  PubMed  Google Scholar 

  31. Nuno DW, Korovkina VP, England SK, Lamping KG (2007) RhoA activation contributes to sex differences in vascular contractions. Arterioscler Thromb Vasc Biol 27:1934–1940. doi:10.1161/ATVBAHA.107.144675

    Article  CAS  PubMed  Google Scholar 

  32. Pandit MM, Inscho EW, Zhang S, Seki T, Rohatgi R, Gusella L, Kishore B, Kohan DE (2015) Flow regulation of endothelin-1 production in the inner medullary collecting duct. Am J Physiol Renal Physiol 308:F541–F552. doi:10.1152/ajprenal.00456.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rae GA, Calixto JB, D’Orleans-Juste P (1995) Effects and mechanisms of action of endothelins on non-vascular smooth muscle of the respiratory, gastrointestinal and urogenital tracts. Regul Pept 55:1–46

    Article  CAS  PubMed  Google Scholar 

  34. Rickham PP (1964) Human experimentation code of ethics of the world medical association declaration of Helsinki. Br Med J 2:177

    Article  CAS  PubMed  Google Scholar 

  35. Santicioli P, Maggi CA (1998) Myogenic and neurogenic factors in the control of pyeloureteral motility and ureteral peristalsis. Pharmacol Rev 50:683–722

    CAS  PubMed  Google Scholar 

  36. Sasser JM, Pollock JS, Pollock DM (2002) Renal endothelin in chronic angiotensin II hypertension. Am J Physiol Regul Integr Comp Physiol 283:R243–R248. doi:10.1152/ajpregu.00086.2002

    Article  CAS  PubMed  Google Scholar 

  37. Schneider MP, Ge Y, Pollock DM, Pollock JS, Kohan DE (2008) Collecting duct-derived endothelin regulates arterial pressure and Na excretion via nitric oxide. Hypertension 51:1605–1610. doi:10.1161/HYPERTENSIONAHA.107.108126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shabir S, Borisova L, Wray S, Burdyga T (2004) Rho-kinase inhibition and electromechanical coupling in rat and guinea-pig ureter smooth muscle: Ca2+-dependent and -independent mechanisms. J Physiol 560:839–855. doi:10.1113/jphysiol.2004.070615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Walsh MP, Cole WC (2013) The role of actin filament dynamics in the myogenic response of cerebral resistance arteries. J Cereb Blood Flow Metab 33:1–12. doi:10.1038/jcbfm.2012.144

    Article  CAS  PubMed  Google Scholar 

  40. Yanagisawa H, Hammer RE, Richardson JA, Williams SC, Clouthier DE, Yanagisawa M (1998) Role of endothelin-1/endothelin-A receptor-mediated signaling pathway in the aortic arch patterning in mice. J Clin Invest 102:22–33. doi:10.1172/JCI2698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yano S, Ueda S, Ikegami K (1981) Effects of some autonomic drugs on the isolated human minor calyx. Urol Int 36:208–215

    Article  CAS  PubMed  Google Scholar 

  42. Zhang X, DiSanto ME (2011) Rho-kinase, a common final path of various contractile bladder and ureter stimuli. Handb Exp Pharmacol :543–68 doi:10.1007/978-3-642-16499-6_24

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Grisk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinbach, A., Schaper, K., Koenen, A. et al. Role of endothelin-1 for the regulation of renal pelvic function. Pflugers Arch - Eur J Physiol 468, 1467–1478 (2016). https://doi.org/10.1007/s00424-016-1848-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-016-1848-z

Keywords

Navigation