Skip to main content

Advertisement

Log in

The how and why of identifying the hair cell mechano-electrical transduction channel

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Identification of the auditory hair cell mechano-electrical transduction (hcMET) channel has been a major focus in the hearing research field since the 1980s when direct mechanical gating of a transduction channel was proposed (Corey and Hudspeth J Neurosci 3:962–976, 1983). To this day, the molecular identity of this channel remains controversial. However, many of the hcMET channel’s properties have been characterized, including pore properties, calcium-dependent ion permeability, rectification, and single channel conductance. At this point, elucidating the molecular identity of the hcMET channel will provide new tools for understanding the mechanotransduction process. This review discusses the significance of identifying the hcMET channel, the difficulties associated with that task, as well as the establishment of clear criteria for this identification. Finally, we discuss potential candidate channels in light of these criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alloui A, Zimmermann K, Mamet J, Duprat F, Noël J, Chemin J, Guy N, Blondeau N, Voilley N, Rubat-Coudert C, Borsotto M, Romey G, Heurteaux C, Reeh P, Eschalier A, Lazdunski M (2006) TREK-1, a K+ channel involved in polymodal pain perception. EMBO J 25(11):2368–2376

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Anishkin A, Loukin SH, Teng J, Kung C (2014) Feeling the hidden mechanical forces in lipid bilayer is an original sense. Proc Natl Acad Sci U S A 111(22):7898–7905

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Asai Y, Holt JR, Géléoc GSG (2010) A quantitative analysis of the spatiotemporal pattern of transient receptor potential gene expression in the developing mouse cochlea. J Assoc Res Otolaryngol 11(1):27–37

    PubMed Central  PubMed  Google Scholar 

  4. Atiba-Davies M, Noben-Trauth K (2007) TRPML3 and hearing loss in the varitint-waddler mouse. Biochim Biophys Acta 1772(8):1028–1031

    CAS  PubMed  Google Scholar 

  5. Bahloul A, Michel V, Hardelin J-P, Nouaille S, Hoos S, Houdusse A, England P, Petit C (2010) Cadherin-23, myosin VIIa and harmonin, encoded by Usher syndrome type I genes, form a ternary complex and interact with membrane phospholipids. Hum Mol Genet 19(18):3557–3565

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Bass RB, Strop P, Barclay M, Rees DC (2002) Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298(5598):1582–1587

    CAS  PubMed  Google Scholar 

  7. Bautista DM, Jordt S-E, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Julius D (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124(6):1269–1282

    CAS  PubMed  Google Scholar 

  8. Beurg M, Evans MG, Hackney CM, Fettiplace R (2006) A large-conductance calcium-selective mechanotransducer channel in mammalian cochlear hair cells. J Neurosci 26(43):10992–11000

    CAS  PubMed  Google Scholar 

  9. Beurg M, Fettiplace R, Nam J-H, Ricci AJ (2009) Localization of inner hair cell mechanotransducer channels using high-speed calcium imaging. Nat Neurosci 12(5):553–558

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Beurg M, Kim KX, Fettiplace R (2014) Conductance and block of hair-cell mechanotransducer channels in transmembrane channel-like protein mutants. J Gen Physiol 144(1):55–69

    CAS  PubMed  Google Scholar 

  11. Beurg M, Nam J-H, Chen Q, Fettiplace R (2010) Calcium balance and mechanotransduction in rat cochlear hair cells. J Neurophysiol 104(1):18–34

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Beurg M, Nam J-H, Crawford A, Fettiplace R (2008) The actions of calcium on hair bundle mechanics in mammalian cochlear hair cells. Biophys J 94(7):2639–2653

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Bianchi L (2007) Mechanotransduction: touch and feel at the molecular level as modeled in Caenorhabditis elegans. Mol Neurobiol 36(3):254–271

    CAS  PubMed  Google Scholar 

  14. Biel M, Zong X, Ludwig A, Sautter A, Hofmann F (1999) Structure and function of cyclic nucleotide-gated channels. Rev Physiol Biochem Pharmacol 135:151–171

    CAS  PubMed  Google Scholar 

  15. Blount P, Sukharev S, Kung C (1997) A mechanosensitive channel protein and its gene in E. coli. Gravit Space Biol Bull 10(2):43–47

    CAS  PubMed  Google Scholar 

  16. Brauchi S, Orta G, Salazar M, Rosenmann E, Latorre R (2006) A hot-sensing cold receptor: C-terminal domain determines thermosensation in transient receptor potential channels. J Neurosci 26(18):4835–4840

    CAS  PubMed  Google Scholar 

  17. Brohawn SG, Su Z, MacKinnon R (2014) Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels. Proc Natl Acad Sci U S A 111(9):3614–3619

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Brown AL, Liao Z, Goodman MB (2008) MEC-2 and MEC-6 in the Caenorhabditis elegans sensory mechanotransduction complex: auxiliary subunits that enable channel activity. J Gen Physiol 131(6):605–616

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Catterall WA (2011) Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 3(8):a003947

    PubMed Central  PubMed  Google Scholar 

  20. Chatzigeorgiou M, Bang S, Hwang SW, Schafer WR (2013) tmc-1 encodes a sodium-sensitive channel required for salt chemosensation in C. elegans. Nature 494(7435):95–99

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Corey DP, García-Añoveros J, Holt JR, Kwan KY, Lin S-Y, Vollrath MA, Amalfitano A, Cheung EL-M, Derfler BH, Duggan A, Géléoc GSG, Gray PA, Hoffman MP, Rehm HL, Tamasauskas D, Zhang D-S (2004) TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432(7018):723–730

    CAS  PubMed  Google Scholar 

  22. Corey DP, Hudspeth AJ (1979) Ionic basis of the receptor potential in a vertebrate hair cell. Nature 281(5733):675–677

    CAS  PubMed  Google Scholar 

  23. Corey DP, Hudspeth AJ (1983) Kinetics of the receptor current in bullfrog saccular hair cells. J Neurosci 3(5):962–976

    CAS  PubMed  Google Scholar 

  24. Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, Dubin AE, Patapoutian A (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330(6000):55–60

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Coste B, Xiao B, Santos JS, Syeda R, Grandl J, Spencer KS, Kim SE, Schmidt M, Mathur J, Dubin AE, Montal M, Patapoutian A (2012) Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483(7388):176–181

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Denk W, Holt JR, Shepherd GM, Corey DP (1995) Calcium imaging of single stereocilia in hair cells: localization of transduction channels at both ends of tip links. Neuron 15(6):1311–1321

    CAS  PubMed  Google Scholar 

  27. Dzeja C, Hagen V, Kaupp UB, Frings S (1999) Ca2+ permeation in cyclic nucleotide-gated channels. EMBO J 18(1):131–144

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Eastwood AL, Goodman MB (2012) Insight into DEG/ENaC channel gating from genetics and structure. Physiology (Bethesda) 27(5):282–290

    CAS  Google Scholar 

  29. Effertz T, Nadrowski B, Piepenbrock D, Albert JT, Göpfert MC (2012) Direct gating and mechanical integrity of Drosophila auditory transducers require TRPN1. Nat Neurosci 15(9):1198–1200

    CAS  PubMed  Google Scholar 

  30. Effertz T, Wiek R, Göpfert MC (2011) NompC TRP channel is essential for Drosophila sound receptor function. Curr Biol 21(21):592–597

    CAS  PubMed  Google Scholar 

  31. Farris HE, LeBlanc CL, Goswami J, Ricci AJ (2004) Probing the pore of the auditory hair cell mechanotransducer channel in turtle. J Physiol 558(Pt 3):769–792

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Fesenko EE, Kolesnikov SS, Lyubarsky AL (1985) Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature 313(6000):310–313

    CAS  PubMed  Google Scholar 

  33. Fettiplace R (2009) Defining features of the hair cell mechanoelectrical transducer channel. Pflugers Arch 458(6):1115–1123

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Frings S, Seifert R, Godde M, Kaupp UB (1995) Profoundly different calcium permeation and blockage determine the specific function of distinct cyclic nucleotide-gated channels. Neuron 15(1):169–179

    CAS  PubMed  Google Scholar 

  35. Gerka-Stuyt J, Au A, Peachey NS, Alagramam KN (2013) Transient receptor potential melastatin 1: a hair cell transduction channel candidate. PLoS One 8(10):e77213

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Gerstner A, Zong X, Hofmann F, Biel M (2000) Molecular cloning and functional characterization of a new modulatory cyclic nucleotide-gated channel subunit from mouse retina. J Neurosci 20(4):1324–1332

    CAS  PubMed  Google Scholar 

  37. Gillespie D, Boda D (2008) The anomalous mole fraction effect in calcium channels: a measure of preferential selectivity. Biophys J 95(6):2658–2672

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Gleason MR, Nagiel A, Jamet S, Vologodskaia M, López-Schier H, Hudspeth AJ (2009) The transmembrane inner ear (Tmie) protein is essential for normal hearing and balance in the zebrafish. Proc Natl Acad Sci U S A 106(50):21347–21352

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Goodman MB, Schwarz EM (2003) Transducing touch in Caenorhabditis elegans. Annu Rev Physiol 65:429–452

    CAS  PubMed  Google Scholar 

  40. Gradogna A, Babini E, Picollo A, Pusch M (2010) A regulatory calcium-binding site at the subunit interface of CLC-K kidney chloride channels. J Gen Physiol 136(3):311–323

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Grati M, Kachar B (2011) Myosin VIIa and sans localization at stereocilia upper tip-link density implicates these Usher syndrome proteins in mechanotransduction. Proc Natl Acad Sci U S A 108(28):11476–11481

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Hackney CM, Furness DN, Benos DJ, Woodley JF, Barratt J (1992) Putative immunolocalization of the mechanoelectrical transduction channels in mammalian cochlear hair cells. Proc Biol Sci 248(1323):215–221

    CAS  PubMed  Google Scholar 

  43. Haynes LW, Yau KW (1990) Single-channel measurement from the cyclic GMP-activated conductance of catfish retinal cones. J Physiol 429:451–481

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Helyer R, Cacciabue-Rivolta D, Davies D, Rivolta MN, Kros CJ, Holley MC (2007) A model for mammalian cochlear hair cell differentiation in vitro: effects of retinoic acid on cytoskeletal proteins and potassium conductances. Eur J Neurosci 25(4):957–973

    CAS  PubMed  Google Scholar 

  45. Hess P, Tsien RW (1984) Mechanism of ion permeation through calcium channels. Nature 309(5967):453–456

    CAS  PubMed  Google Scholar 

  46. Houser DS, Finneran JJ (2006) A comparison of underwater hearing sensitivity in bottlenose dolphins (Tursiops truncatus) determined by electrophysiological and behavioral methods. J Acoust Soc Am 120(3):1713–1722

    PubMed  Google Scholar 

  47. Housley GD, Greenwood D, Ashmore JF (1992) Localization of cholinergic and purinergic receptors on outer hair cells isolated from the guinea-pig cochlea. Proc Biol Sci 249(1326):265–273

    CAS  PubMed  Google Scholar 

  48. Howard J, Hudspeth AJ (1987) Mechanical relaxation of the hair bundle mediates adaptation in mechanoelectrical transduction by the bullfrog’s saccular hair cell. Proc Natl Acad Sci U S A 84(9):3064–3068

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Howard J, Hudspeth AJ (1988) Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog’s saccular hair cell. Neuron 1(3):189–199

    CAS  PubMed  Google Scholar 

  50. Hudspeth AJ (2005) How the ear’s works work: mechanoelectrical transduction and amplification by hair cells. C R Biol 328(2):155–162

    CAS  PubMed  Google Scholar 

  51. Ishibashi T, Takumida M, Akagi N, Hirakawa K, Anniko M (2008) Expression of transient receptor potential vanilloid (TRPV) 1, 2, 3, and 4 in mouse inner ear. Acta Otolaryngol 128(12):1286–1293

    CAS  PubMed  Google Scholar 

  52. Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82(3):769–824

    CAS  PubMed  Google Scholar 

  53. Kawashima Y, Géléoc GSG, Kurima K, Labay V, Lelli A, Asai Y, Makishima T, Wu DK, Della Santina CC, Holt JR, Griffith AJ (2011) Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes. J Clin Invest 31(34):12241–12250

  54. Kazmierczak P, Sakaguchi H, Tokita J, Wilson-Kubalek EM, Milligan RA, Müller U, Kachar B (2007) Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 449(7158):87–91

    CAS  PubMed  Google Scholar 

  55. Kellenberger S, Schild L (2002) Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev 82(3):735–767

    CAS  PubMed  Google Scholar 

  56. Kim KX, Beurg M, Hackney CM, Furness DN, Mahendrasingam S, Fettiplace R (2013) The role of transmembrane channel-like proteins in the operation of hair cell mechanotransducer channels. J Gen Physiol 142(5):493–505

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Kurima K, Peters LM, Yang Y, Riazuddin S, Ahmed ZM, Naz S, Arnaud D, Drury S, Mo J, Makishima T, Ghosh M, Menon PSN, Deshmukh D, Oddoux C, Ostrer H, Khan S, Riazuddin S, Deininger PL, Hampton LL, Sullivan SL, Battey J, James F, Keats BJB, Wilcox ER, Friedman TB, Griffith AJ (2002) Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear hair-cell function. Nat Genet 30(3):277–284

    PubMed  Google Scholar 

  58. Kurima K, Yang Y, Sorber K, Griffith AJ (2003) Characterization of the transmembrane channel-like (TMC) gene family: functional clues from hearing loss and epidermodysplasia verruciformis. Genomics 82(3):300–308

    CAS  PubMed  Google Scholar 

  59. Kwan KY, Allchorne AJ, Vollrath MA, Christensen AP, Zhang D-S, Woolf CJ, Corey DP (2006) TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50(2):277–289

    CAS  PubMed  Google Scholar 

  60. Lehnert BP, Baker AE, Gaudry Q, Chiang A-S, Wilson RI (2013) Distinct roles of TRP channels in auditory transduction and amplification in drosophila. Neuron 77(1):115–128

    CAS  PubMed  Google Scholar 

  61. Levsky JM, Singer RH (2003) Fluorescence in situ hybridization: past, present and future. J Cell Sci 116(Pt 14):2833–2838

    CAS  PubMed  Google Scholar 

  62. Liedtke W, Choe Y, Martí-Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM, Heller S (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103(3):525–535

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Lin Z, Perez P, Sun Z, Liu J-J, Shin JH, Hyrc KL, Samways D, Egan T, Holley MC, Bao J (2012) Reprogramming of single-cell-derived mesenchymal stem cells into hair cell-like cells. Otol Neurotol 33(9):1648–1655

    PubMed Central  PubMed  Google Scholar 

  64. Lisenbee CS, Karnik SK, Trelease RN (2003) Overexpression and mislocalization of a tail-anchored GFP redefines the identity of peroxisomal ER. Traffic 4(7):491–501

    CAS  PubMed  Google Scholar 

  65. Liu H, Pecka JL, Zhang Q, Soukup GA, Beisel KW, He DZZ (2014) Characterization of transcriptomes of cochlear inner and outer hair cells. J Neurosci 34(33):11085–11095

    CAS  PubMed  Google Scholar 

  66. Lo P-K, Lee JS, Chen H, Reisman D, Berger FG, Sukumar S (2013) Cytoplasmic mislocalization of overexpressed FOXF1 is associated with the malignancy and metastasis of colorectal adenocarcinomas. Exp Mol Pathol 94(1):262–269

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Longo-Guess CM, Gagnon LH, Cook SA, Wu J, Zheng QY, Johnson KR (2005) A missense mutation in the previously undescribed gene Tmhs underlies deafness in hurry-scurry (hscy) mice. Proc Natl Acad Sci U S A 102(22):7894–7899

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Lumpkin EA, Marquis RE, Hudspeth AJ (1997) The selectivity of the hair cell’s mechanoelectrical-transduction channel promotes Ca2+ flux at low Ca2+ concentrations. Proc Natl Acad Sci U S A 94(20):10997–11002

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Maeda R, Kindt KS, Mo W, Morgan CP, Erickson T, Zhao H, Clemens-Grisham R, Barr-Gillespie PG, Nicolson T (2014) Tip-link protein protocadherin 15 interacts with transmembrane channel-like proteins TMC1 and TMC2. Proc Natl Acad Sci USA

  70. Marcotti W, Corns LF, Desmonds T, Kirkwood NK, Richardson GP, Kros CJ (2014) Transduction without tip links in cochlear hair cells is mediated by ion channels with permeation properties distinct from those of the mechano-electrical transducer channel. J Neurosci 34(16):5505–5514

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Nagata K, Duggan A, Kumar G, García-Añoveros J (2005) Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J Neurosci 25(16):4052–4061

    CAS  PubMed  Google Scholar 

  72. Noël J, Zimmermann K, Busserolles J, Deval E, Alloui A, Diochot S, Guy N, Borsotto M, Reeh P, Eschalier A, Lazdunski M (2009) The mechano-activated K+ channels TRAAK and TREK-1 control both warm and cold perception. EMBO J 28(9):1308–1318

    PubMed Central  PubMed  Google Scholar 

  73. O’Hagan R, Chalfie M, Goodman MB (2005) The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat Neurosci 8(1):43–50

    PubMed  Google Scholar 

  74. Ohmori H (1985) Mechano-electrical transduction currents in isolated vestibular hair cells of the chick. J Physiol 359:189–217

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Oshima K, Shin K, Diensthuber M, Peng AW, Ricci AJ, Heller S (2010) Mechanosensitive hair cell-like cells from embryonic and induced pluripotent stem cells. Cell 141(4):704–716

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Pan B, Géléoc GS, Asai Y, Horwitz GC, Kurima K, Ishikawa K, Kawashima Y, Griffith AJ, Holt JR (2013) TMC1 and TMC2 are components of the mechanotransduction channel in hair cells of the mammalian inner ear. Neuron

  77. Pan B, Waguespack J, Schnee ME, Leblanc C, Ricci AJ (2012) Permeation properties of the hair cell mechanotransducer channel provide insight into its molecular structure. J Neurophysiol 107(9):2408–2420

  78. Park S, Lee J-H, Cho H-J, K-y L, Kim MO, Yun B-W, Ryoo Z (2013) tmie is required for gentamicin uptake by the hair cells of mice. Comp Med 63(2):136–142

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Pedersen SF, Owsianik G, Nilius B (2005) TRP channels: an overview. Cell Calcium 38(3–4):233–252

    CAS  PubMed  Google Scholar 

  80. Peng B-G, Ahmad S, Chen S, Chen P, Price MP, Lin X (2004) Acid-sensing ion channel 2 contributes a major component to acid-evoked excitatory responses in spiral ganglion neurons and plays a role in noise susceptibility of mice. J Neurosci 24(45):10167–10175

    CAS  PubMed  Google Scholar 

  81. Peng AW, Salles FT, Pan B, Ricci AJ (2011) Integrating the biophysical and molecular mechanisms of auditory hair cell mechanotransduction. Nat Commun 2:523

    PubMed Central  PubMed  Google Scholar 

  82. Perozo E, Cortes DM, Sompornpisut P, Kloda A, Martinac B (2002) Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418(6901):942–948

    CAS  PubMed  Google Scholar 

  83. Perozo E, Rees DC (2003) Structure and mechanism in prokaryotic mechanosensitive channels. Curr Opin Struct Biol 13(4):432–442

    CAS  PubMed  Google Scholar 

  84. Pickles JO, Brix J, Comis SD, Gleich O, Köppl C, Manley GA, Osborne MP (1989) The organization of tip links and stereocilia on hair cells of bird and lizard basilar papillae. Hear Res 41(1):31–41

    CAS  PubMed  Google Scholar 

  85. Pickles JO, Comis SD, Osborne MP (1984) Cross-links between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction. Hear Res 15(2):103–112

    CAS  PubMed  Google Scholar 

  86. Quick K, Zhao J, Eijkelkamp N, Linley JE, Rugiero F, Cox JJ, Raouf R, Gringhuis M, Sexton JE, Abramowitz J, Taylor R, Forge A, Ashmore J, Kirkwood N, Kros CJ, Richardson GP, Freichel M, Flockerzi V, Birnbaumer L, Wood JN (2012) TRPC3 and TRPC6 are essential for normal mechanotransduction in subsets of sensory neurons and cochlear hair cells. Open Biol 2(5):120068

    PubMed Central  PubMed  Google Scholar 

  87. Quintero OA, Moore JE, Unrath WC, Manor U, Salles FT, Grati M, Kachar B, Yengo CM (2010) Intermolecular autophosphorylation regulates myosin IIIa activity and localization in parallel actin bundles. J Biol Chem 285(46):35770–35782

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Ramakrishnan NA, Drescher MJ, Barretto RL, Beisel KW, Hatfield JS, Drescher DG (2009) Calcium-dependent binding of HCN1 channel protein to hair cell stereociliary tip link protein protocadherin 15 CD3. J Biol Chem 284(5):3227–3238

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Ramakrishnan NA, Drescher MJ, Khan KM, Hatfield JS, Drescher DG (2012) HCN1 and HCN2 proteins are expressed in cochlear hair cells: HCN1 can form a ternary complex with protocadherin 15 CD3 and F-actin-binding filamin A or can interact with HCN2. J Biol Chem 287(45):37628–37646

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Ricci AJ, Crawford AC, Fettiplace R (2003) Tonotopic variation in the conductance of the hair cell mechanotransducer channel. Neuron 40(5):983–990

    CAS  PubMed  Google Scholar 

  91. Ricci AJ, Fettiplace R (1998) Calcium permeation of the turtle hair cell mechanotransducer channel and its relation to the composition of endolymph. J Physiol 506(Pt 1):159–173

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Ricci AJ, Gray-Keller M, Fettiplace R (2000) Tonotopic variations of calcium signalling in turtle auditory hair cells. J Physiol 524(Pt 2):423–436

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Ricci AJ, Kennedy HJ, Crawford AC, Fettiplace R (2005) The transduction channel filter in auditory hair cells. J Neurosci 25(34):7831–7839

    CAS  PubMed  Google Scholar 

  94. Roza C, Puel J-L, Kress M, Baron A, Diochot S, Lazdunski M, Waldmann R (2004) Knockout of the ASIC2 channel in mice does not impair cutaneous mechanosensation, visceral mechanonociception and hearing. J Physiol 558(Pt 2):659–669

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Rüsch A, Hummler E (1999) Mechano-electrical transduction in mice lacking the alpha-subunit of the epithelial sodium channel. Hear Res 131(1–2):170–176

    PubMed  Google Scholar 

  96. Saleem F, Rowe ICM, Shipston MJ (2009) Characterization of BK channel splice variants using membrane potential dyes. Br J Pharmacol 156(1):143–152

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Salles FT, Merritt J, Raymond C, Manor U, Dougherty GW, Sousa AD, Moore JE, Yengo CM, Dosé AC, Kachar B (2009) Myosin IIIa boosts elongation of stereocilia by transporting espin 1 to the plus ends of actin filaments. Nat Cell Biol 11(4):443–450

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Shabbir MI, Ahmed ZM, Khan SY, Riazuddin S, Waryah AM, Khan SN, Camps RD, Ghosh M, Kabra M, Belyantseva IA, Friedman TB, Riazuddin S (2006) Mutations of human TMHS cause recessively inherited non-syndromic hearing loss. J Med Genet 43(8):634–640

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Shin J-B, Krey JF, Hassan A, Metlagel Z, Tauscher AN, Pagana JM, Sherman NE, Jeffery ED, Spinelli KJ, Zhao H, Wilmarth PA, Choi D, David LL, Auer M, Barr-Gillespie PG (2013) Molecular architecture of the chick vestibular hair bundle. Nat Neurosci 16(3):365–374

  100. Shin MJ, Lee J-H, Yu DH, Kim HJ, Bae KB, Yuh HS, Kim MO, Hyun B-H, Lee S, Park R, Ryoo ZY (2010) Spatiotemporal expression of tmie in the inner ear of rats during postnatal development. Comp Med 60(4):288–294

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Sukharev SI, Blount P, Martinac B, Guy HR, Kung C (1996) MscL: a mechanosensitive channel in Escherichia coli. Soc Gen Physiol Ser 51:133–141

    CAS  PubMed  Google Scholar 

  102. Takumida M, Ishibashi T, Hamamoto T, Hirakawa K, Anniko M (2009) Expression of transient receptor potential channel melastin (TRPM) 1–8 and TRPA1 (ankyrin) in mouse inner ear. Acta Otolaryngol 129(10):1050–1060

    CAS  PubMed  Google Scholar 

  103. Tang L, Gamal El-Din TM, Payandeh J, Martinez GQ, Heard TM, Scheuer T, Zheng N, Catterall WA (2014) Structural basis for Ca2+ selectivity of a voltage-gated calcium channel. Nature 505(7481):56–61

    PubMed  Google Scholar 

  104. Tousson A, Alley CD, Sorscher EJ, Brinkley BR, Benos DJ (1989) Immunochemical localization of amiloride-sensitive sodium channels in sodium-transporting epithelia. J Cell Sci 93(Pt 2):349–362

    CAS  PubMed  Google Scholar 

  105. van Aken AFJ, Atiba-Davies M, Marcotti W, Goodyear RJ, Bryant JE, Richardson GP, Noben-Trauth K, Kros CJ (2008) TRPML3 mutations cause impaired mechano-electrical transduction and depolarization by an inward-rectifier cation current in auditory hair cells of varitint-waddler mice. J Physiol 586(Pt 22):5403–5418

    PubMed Central  PubMed  Google Scholar 

  106. Voets T, Talavera K, Owsianik G, Nilius B (2005) Sensing with TRP channels. Nat Chem Biol 1(2):85–92

    CAS  PubMed  Google Scholar 

  107. Waguespack J, Salles FT, Kachar B, Ricci AJ (2007) Stepwise morphological and functional maturation of mechanotransduction in rat outer hair cells. J Neurosci 27(50):13890–13902

    CAS  PubMed  Google Scholar 

  108. Wang Z, Jiang Y, Lu L, Huang R, Hou Q, Shi F (2007) Molecular mechanisms of cyclic nucleotide-gated ion channel gating. J Genet Genom 34(6):477–485

    CAS  Google Scholar 

  109. Wang L, Zou J, Shen Z, Song E, Yang J (2012) Whirlin interacts with espin and modulates its actin-regulatory function: an insight into the mechanism of Usher syndrome type II. Hum Mol Genet 21(3):692–710

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Xie J, Price MP, Wemmie JA, Askwith CC, Welsh MJ (2003) ASIC3 and ASIC1 mediate FMRFamide-related peptide enhancement of H+-gated currents in cultured dorsal root ganglion neurons. J Neurophysiol 89(5):2459–2465

    CAS  PubMed  Google Scholar 

  111. Xiong W, Grillet N, Elledge HM, Wagner TFJ, Zhao B, Johnson KR, Kazmierczak P, Müller U (2012) TMHS is an integral component of the mechanotransduction machinery of cochlear hair cells. Cell 151(6):1283–1295

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Yan Z, Zhang W, He Y, Gorczyca D, Xiang Y, Cheng LE, Meltzer S, Jan LY, Jan YN (2013) Drosophila NOMPC is a mechanotransduction channel subunit for gentle-touch sensation. Nature 493(7431):221–225

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Yang J-J, Su M-C, Chien K-H, Hsin C-H, Li S-Y (2010) Identification of novel variants in the TMIE gene of patients with nonsyndromic hearing loss. Int J Pediatr Otorhinolaryngol 74(5):489–493

    PubMed  Google Scholar 

  114. Yau KW, Baylor DA (1989) Cyclic GMP-activated conductance of retinal photoreceptor cells. Annu Rev Neurosci 12:289–327

    CAS  PubMed  Google Scholar 

  115. Zallocchi M, Meehan DT, Delimont D, Rutledge J, Gratton MA, Flannery J, Cosgrove D (2012) Role for a novel Usher protein complex in hair cell synaptic maturation. PLoS One 7(2):e30573

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Zhang W, Yan Z, Jan LY, Jan YN (2013) Sound response mediated by the TRP channels NOMPC, NANCHUNG, and INACTIVE in chordotonal organs of Drosophila larvae. Proc Natl Acad Sci U S A 110(33):13612–13617

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by DAAD (German academic exchange service) to T.E., by the NSF-GRFP to A.L.S., and by RO1 DC003896 from NIDCD to A.J.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Ricci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Effertz, T., Scharr, A.L. & Ricci, A.J. The how and why of identifying the hair cell mechano-electrical transduction channel. Pflugers Arch - Eur J Physiol 467, 73–84 (2015). https://doi.org/10.1007/s00424-014-1606-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1606-z

Keywords

Navigation