Skip to main content
Log in

Postnatal exposure to voluntary exercise but not the antioxidant catechin protects the vasculature after a switch to an atherogenic environment in middle-age mice

  • Integrative Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

We aimed to evaluate the lasting functional imprinting of exercise (EX) and catechin (CAT) on the vascular function of middle-age mice switched to a proatherogenic environment. C57BL/6J mice (n = 10–15 in each group) fed a regular diet (RD) were exposed from the age of 1 to 9 months either to EX (voluntary running; 2.7 ± 0.2 km/day), to the polyphenol CAT (30 mg/kg/day in drinking water), or to physical inactivity (PI). At 9 months of age, EX and CAT were stopped and mice either remained on the RD or were fed a Western diet (WD) for an additional 3 months. At 12 months of age, mice from all groups fed a WD had similar body mass, systolic blood pressure, and plasma total cholesterol, glucose, insulin, and isoprostane. Compared to the RD, the WD induced an indomethacin-sensitive aortic endothelium-dependent and independent dysfunction in PI mice (p < 0.05) that was prevented by both EX and CAT; this benefit was associated with a higher (p < 0.05) non-nitric oxide/non-prostacyclin endothelium-dependent relaxation. While EX, but not PI or CAT, prevented vascular dysfunction induced by the WD in cerebral arteries, it had no effect in femoral arteries. The profiles of activity of antioxidant enzymes and of proinflammatory gene expression in the aorta suggest a better adaptation of EX > CAT > PI mice to stress. In conclusion, our data suggest that a postnatal exposure to EX, but not to CAT, imprints an adaptive defense capacity in the vasculature against a deleterious change in lifestyle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abd El-Aziz TA, Mohamed RH, Pasha HF, Abdel-Aziz HR (2011) Catechin protects against oxidative stress and inflammatory-mediated cardiotoxicity in adriamycin-treated rats. Clin Exp Med. doi:10.1007/s10238-011-0165-2

  2. Barker DJ (2004) The developmental origins of adult disease. J Am Coll Nutr 23(6 Suppl):588S–595S

    PubMed  CAS  Google Scholar 

  3. Basu R, Breda E, Oberg AL, Powell CC, Dalla Man C, Basu A, Vittone JL, Klee GG, Arora P, Jensen MD, Toffolo G, Cobelli C, Rizza RA (2003) Mechanisms of the age-associated deterioration in glucose tolerance: contribution of alterations in insulin secretion, action, and clearance. Diabetes 52(7):1738–1748

    Article  PubMed  CAS  Google Scholar 

  4. Bayod S, Del Valle J, Lalanza JF, Sanchez-Roige S, de Luxan-Delgado B, Coto-Montes A, Canudas AM, Camins A, Escorihuela RM, Pallas M (2012) Long-term physical exercise induces changes in sirtuin 1 pathway and oxidative parameters in adult rat tissues. Exp Gerontol. doi:10.1016/j.exger.2012.08.004

  5. Bolduc V, Drouin A, Gillis MA, Duquette N, Thorin-Trescases N, Frayne-Robillard I, Des Rosiers C, Tardif JC, Thorin E (2011) Heart rate-associated mechanical stress impairs carotid but not cerebral artery compliance in dyslipidemic atherosclerotic mice. Am J Physiol Heart Circ Physiol 301(5):H2081–H2092. doi:10.1152/ajpheart.00706.2011

    Article  PubMed  CAS  Google Scholar 

  6. Bolduc V, Baraghis E, Duquette N, Thorin-Trescases N, Lambert J, Lesage F, Thorin E (2012) Catechin prevents severe dyslipidemia-associated changes in wall biomechanics of cerebral arteries in LDLr−/−:hApoB+/+ mice and improves cerebral blood flow. Am J Physiol Heart Circ Physiol 302(6):H1330–H1339. doi:10.1152/ajpheart.01044.2011

    Article  PubMed  CAS  Google Scholar 

  7. Bunker AK, Arce-Esquivel AA, Rector RS, Booth FW, Ibdah JA, Laughlin MH (2010) Physical activity maintains aortic endothelium-dependent relaxation in the obese type 2 diabetic OLETF rat. Am J Physiol Heart Circ Physiol 298(6):H1889–H1901. doi:10.1152/ajpheart.01252.2009

    Article  PubMed  CAS  Google Scholar 

  8. Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87(10):840–844

    Article  PubMed  CAS  Google Scholar 

  9. Carrera-Bastos P, Fontes-Villalba M, O’Keefe JH, Lindeberg S, Cordain L (2011) The Western diet and lifestyle and diseases of civilization. Res Rep Clin Cardiol 2:15–35

    Article  Google Scholar 

  10. Chakravarty EF, Hubert HB, Lingala VB, Fries JF (2008) Reduced disability and mortality among aging runners: a 21-year longitudinal study. Arch Intern Med 168(15):1638–1646. doi:10.1001/archinte.168.15.1638

    Article  PubMed  Google Scholar 

  11. Chen SJ, Wu CC, Yen MH (2001) Exercise training activates large-conductance calcium-activated K(+) channels and enhances nitric oxide production in rat mesenteric artery and thoracic aorta. J Biomed Sci 8(3):248–255

    PubMed  CAS  Google Scholar 

  12. Chousos I, Perrea D, Kyriaki D, Liatis S, Katsilambros N, Makrilakis K (2010) Acute hyperhomocysteinaemia blunts endothelial dependent and endothelial independent vasodilatation in diabetic patients. Diabetes Vasc Dis Res: Off J Int Soc Diabetes Vascr Dis 7(3):186–194. doi:10.1177/1479164110369687

    Article  Google Scholar 

  13. Collins AR, Lyon CJ, Xia X, Liu JZ, Tangirala RK, Yin F, Boyadjian R, Bikineyeva A, Pratico D, Harrison DG, Hsueh WA (2009) Age-accelerated atherosclerosis correlates with failure to upregulate antioxidant genes. Circ Res 104(6):e42–e54. doi:10.1161/CIRCRESAHA.108.188771

    Article  PubMed  CAS  Google Scholar 

  14. Csiszar A, Ungvari Z, Edwards JG, Kaminski P, Wolin MS, Koller A, Kaley G (2002) Aging-induced phenotypic changes and oxidative stress impair coronary arteriolar function. Circ Res 90(11):1159–1166

    Article  PubMed  CAS  Google Scholar 

  15. De Moraes R, Gioseffi G, Nobrega AC, Tibirica E (2004) Effects of exercise training on the vascular reactivity of the whole kidney circulation in rabbits. J Appl Physiol 97(2):683–688. doi:10.1152/japplphysiol.00923.2003

    Article  PubMed  Google Scholar 

  16. Dilis V, Katsoulis M, Lagiou P, Trichopoulos D, Naska A, Trichopoulou A (2012) Mediterranean diet and CHD: the Greek European prospective investigation into cancer and nutrition cohort. Br J Nutr 108(4):699–709. doi:10.1017/S0007114512001821

    Article  PubMed  CAS  Google Scholar 

  17. Drouin A, Thorin E (2009) Flow-induced dilation is mediated by Akt-dependent activation of endothelial nitric oxide synthase-derived hydrogen peroxide in mouse cerebral arteries. Stroke 40(5):1827–1833. doi:10.1161/STROKEAHA.108.536805

    Article  PubMed  CAS  Google Scholar 

  18. Drouin A, Bolduc V, Thorin-Trescases N, Belanger E, Fernandes P, Baraghis E, Lesage F, Gillis MA, Villeneuve L, Hamel E, Ferland G, Thorin E (2011) Catechin treatment improves cerebrovascular flow-mediated dilation and learning abilities in atherosclerotic mice. Am J Physiol Heart Circ Physiol 300(3):H1032–H1043. doi:10.1152/ajpheart.00410.2010

    Article  PubMed  CAS  Google Scholar 

  19. Drouin A, Farhat N, Bolduc V, Thorin-Trescases N, Gillis MA, Villeneuve L, Nguyen A, Thorin E (2011) Up-regulation of thromboxane A(2) impairs cerebrovascular eNOS function in aging atherosclerotic mice. Pflugers Arch 462(3):371–383. doi:10.1007/s00424-011-0973-y

    Article  PubMed  CAS  Google Scholar 

  20. Durrant JR, Seals DR, Connell ML, Russell MJ, Lawson BR, Folian BJ, Donato AJ, Lesniewski LA (2009) Voluntary wheel running restores endothelial function in conduit arteries of old mice: direct evidence for reduced oxidative stress, increased superoxide dismutase activity and down-regulation of NADPH oxidase. J Physiol 587(Pt 13):3271–3285. doi:10.1113/jphysiol.2009.169771

    Article  PubMed  CAS  Google Scholar 

  21. Feng L, Xia Y, Garcia GE, Hwang D, Wilson CB (1995) Involvement of reactive oxygen intermediates in cyclooxygenase-2 expression induced by interleukin-1, tumor necrosis factor-alpha, and lipopolysaccharide. J Clin Invest 95(4):1669–1675. doi:10.1172/JCI117842

    Article  PubMed  CAS  Google Scholar 

  22. Filaire E, Rouveix M, Massart A, Gladine C, Davicco MJ, Durand D (2009) Lipid peroxidation and antioxidant status in rat: effect of food restriction and wheel running. Eur J Appl Physiol 107(2):243–250. doi:10.1007/s00421-009-1121-7

    Article  PubMed  CAS  Google Scholar 

  23. Fisher-Wellman K, Bloomer RJ (2009) Acute exercise and oxidative stress: a 30 year history. Dyn Med 8:1. doi:10.1186/1476-5918-8-1

    Article  PubMed  Google Scholar 

  24. Gendron ME, Thorin E (2007) A change in the redox environment and thromboxane A2 production precede endothelial dysfunction in mice. Am J Physiol Heart Circ Physiol 293(4):H2508–H2515. doi:10.1152/ajpheart.00352.2007

    Article  PubMed  CAS  Google Scholar 

  25. Gendron ME, Theoret JF, Mamarbachi AM, Drouin A, Nguyen A, Bolduc V, Thorin-Trescases N, Merhi Y, Thorin E (2010) Late chronic catechin antioxidant treatment is deleterious to the endothelial function in aging mice with established atherosclerosis. Am J Physiol Heart Circ Physiol 298(6):H2062–H2070. doi:10.1152/ajpheart.00532.2009

    Article  PubMed  CAS  Google Scholar 

  26. Gendron ME, Thorin-Trescases N, Mamarbachi AM, Villeneuve L, Theoret JF, Mehri Y, Thorin E (2012) Time-dependent beneficial effect of chronic polyphenol treatment with catechin on endothelial dysfunction in aging mice. Dose-Response 10(1):108–119. doi:10.2203/dose-response.11-014.Thorin

    Article  PubMed  CAS  Google Scholar 

  27. Gielen S, Schuler G, Adams V (2010) Cardiovascular effects of exercise training: molecular mechanisms. Circulation 122(12):1221–1238. doi:10.1161/CIRCULATIONAHA.110.939959

    Article  PubMed  Google Scholar 

  28. Giorgio M, Trinei M, Migliaccio E, Pelicci PG (2007) Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Biol 8(9):722–728. doi:10.1038/nrm2240

    Article  PubMed  CAS  Google Scholar 

  29. Gomez-Cabrera MC, Borras C, Pallardo FV, Sastre J, Ji LL, Vina J (2005) Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats. J Physiol 567(Pt 1):113–120. doi:10.1113/jphysiol.2004.080564

    Article  PubMed  CAS  Google Scholar 

  30. Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142(2):231–255. doi:10.1038/sj.bjp.0705776

    Article  PubMed  CAS  Google Scholar 

  31. Hamburg NM, McMackin CJ, Huang AL, Shenouda SM, Widlansky ME, Schulz E, Gokce N, Ruderman NB, Keaney JF Jr, Vita JA (2007) Physical inactivity rapidly induces insulin resistance and microvascular dysfunction in healthy volunteers. Arterioscler Thromb Vasc Biol 27(12):2650–2656. doi:10.1161/ATVBAHA.107.153288

    Article  PubMed  CAS  Google Scholar 

  32. Harman D (2006) Free radical theory of aging: an update: increasing the functional life span. Ann N Y Acad Sci 1067:10–21. doi:10.1196/annals.1354.003

    Article  PubMed  CAS  Google Scholar 

  33. Haskell WL, Sims C, Myll J, Bortz WM, St Goar FG, Alderman EL (1993) Coronary artery size and dilating capacity in ultradistance runners. Circulation 87(4):1076–1082

    Article  PubMed  CAS  Google Scholar 

  34. Ishida S, Hamasaki S, Kamekou M, Yoshitama T, Nakano F, Yoshikawa A, Kataoka T, Saihara K, Minagoe S, Tei C (2003) Advancing age is associated with diminished vascular remodeling and impaired vasodilation in resistance coronary arteries. Coron Artery Dis 14(6):443–449. doi:10.1097/01.mca.0000087912.54460.bf

    Article  PubMed  Google Scholar 

  35. Krummen S, Falck JR, Thorin E (2005) Two distinct pathways account for EDHF-dependent dilatation in the gracilis artery of dyslipidaemic hApoB+/+ mice. Br J Pharmacol 145(2):264–270. doi:10.1038/sj.bjp.0706194

    Article  PubMed  CAS  Google Scholar 

  36. Krummen S, Drouin A, Gendron ME, Falck JR, Thorin E (2006) ROS-sensitive cytochrome P450 activity maintains endothelial dilatation in ageing but is transitory in dyslipidaemic mice. Br J Pharmacol 147(8):897–904. doi:10.1038/sj.bjp.0706679

    Article  PubMed  CAS  Google Scholar 

  37. Lairon D (2007) Intervention studies on Mediterranean diet and cardiovascular risk. Mol Nutr & food Res 51(10):1209–1214. doi:10.1002/mnfr.200700097

    CAS  Google Scholar 

  38. Laufs U, Wassmann S, Czech T, Munzel T, Eisenhauer M, Bohm M, Nickenig G (2005) Physical inactivity increases oxidative stress, endothelial dysfunction, and atherosclerosis. Arterioscler Thromb Vasc Biol 25(4):809–814. doi:10.1161/01.ATV.0000158311.24443.af

    Article  PubMed  CAS  Google Scholar 

  39. Malik S, Wong ND, Franklin SS, Kamath TV, L’Italien GJ, Pio JR, Williams GR (2004) Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease, and all causes in United States adults. Circulation 110(10):1245–1250. doi:10.1161/01.CIR.0000140677.20606.0E

    Article  PubMed  Google Scholar 

  40. Mattson MP (2008) Hormesis and disease resistance: activation of cellular stress response pathways. Hum Exp Toxicol 27(2):155–162. doi:10.1177/0960327107083417

    Article  PubMed  Google Scholar 

  41. Mattison JA, Roth GS, Beasley TM, Tilmont EM, Handy AM, Herbert RL, Longo DL, Allison DB, Young JE, Bryant M, Barnard D, Ward WF, Qi W, Ingram DK, de Cabo R (2012) Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 489(7415):318–321. doi:10.1038/nature11432

    Article  PubMed  CAS  Google Scholar 

  42. Muller JM, Davis MJ, Chilian WM (1996) Integrated regulation of pressure and flow in the coronary microcirculation. Cardiovasc Res 32(4):668–678

    PubMed  CAS  Google Scholar 

  43. Navasiolava NM, Dignat-George F, Sabatier F, Larina IM, Demiot C, Fortrat JO, Gauquelin-Koch G, Kozlovskaya IB, Custaud MA (2010) Enforced physical inactivity increases endothelial microparticle levels in healthy volunteers. Am J Physiol Heart Circ Physiol 299(2):H248–H256. doi:10.1152/ajpheart.00152.2010

    Article  PubMed  CAS  Google Scholar 

  44. Neumann CA, Cao J, Manevich Y (2009) Peroxiredoxin 1 and its role in cell signaling. Cell Cycle 8(24):4072–4078

    Article  PubMed  CAS  Google Scholar 

  45. Nocon M, Hiemann T, Muller-Riemenschneider F, Thalau F, Roll S, Willich SN (2008) Association of physical activity with all-cause and cardiovascular mortality: a systematic review and meta-analysis. Eur J Cardiovasc Prev Rehabil 15(3):239–246. doi:10.1097/HJR.0b013e3282f55e09

    Article  PubMed  Google Scholar 

  46. North BJ, Sinclair DA (2012) The intersection between aging and cardiovascular disease. Circ Res 110(8):1097–1108. doi:10.1161/CIRCRESAHA.111.246876

    Article  PubMed  CAS  Google Scholar 

  47. Okada T, Tsukano H, Endo M, Tabata M, Miyata K, Kadomatsu T, Miyashita K, Semba K, Nakamura E, Tsukano M, Mizuta H, Oike Y (2010) Synoviocyte-derived angiopoietin-like protein 2 contributes to synovial chronic inflammation in rheumatoid arthritis. Am J Pathol 176(5):2309–2319. doi:10.2353/ajpath.2010.090865

    Article  PubMed  CAS  Google Scholar 

  48. O’Rourke MF, Hashimoto J (2008) Arterial stiffness: a modifiable cardiovascular risk factor? J Cardpulm Rehabil Prev) 28(4):225–237. doi:10.1097/01.HCR.0000327179.21498.38

    Google Scholar 

  49. Palsamy P, Subramanian S (2011) Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2-Keap1 signaling. Biochim Biophys Acta 1812(7):719–731. doi:10.1016/j.bbadis.2011.03.008

    Article  PubMed  CAS  Google Scholar 

  50. Papaioannou TG, Karatzis EN, Vavuranakis M, Lekakis JP, Stefanadis C (2006) Assessment of vascular wall shear stress and implications for atherosclerotic disease. Int J Cardiol 113(1):12–18. doi:10.1016/j.ijcard.2006.03.035

    Article  PubMed  Google Scholar 

  51. Park Y, Booth FW, Lee S, Laye MJ, Zhang C (2012) Physical activity opposes coronary vascular dysfunction induced during high fat feeding in mice. J Physiol 590(Pt 17):4255–4268. doi:10.1113/jphysiol.2012.234856

    Article  PubMed  CAS  Google Scholar 

  52. Patterson CM, Dunn-Meynell AA, Levin BE (2008) Three weeks of early-onset exercise prolongs obesity resistance in DIO rats after exercise cessation. Am J Physiol Regul Integr Comp Physiol 294(2):R290–R301. doi:10.1152/ajpregu.00661.2007

    Article  PubMed  CAS  Google Scholar 

  53. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  PubMed  CAS  Google Scholar 

  54. Pierce GL, Donato AJ, LaRocca TJ, Eskurza I, Silver AE, Seals DR (2011) Habitually exercising older men do not demonstrate age-associated vascular endothelial oxidative stress. Aging cell 10(6):1032–1037. doi:10.1111/j.1474-9726.2011.00748.x

    Article  PubMed  CAS  Google Scholar 

  55. Qiang W, Weiqiang K, Qing Z, Pengju Z, Yi L (2007) Aging impairs insulin-stimulated glucose uptake in rat skeletal muscle via suppressing AMPKalpha. Exp Mol Med 39(4):535–543

    Article  PubMed  CAS  Google Scholar 

  56. Radak Z, Chung HY, Goto S (2005) Exercise and hormesis: oxidative stress-related adaptation for successful aging. Biogerontology 6(1):71–75. doi:10.1007/s10522-004-7386-7

    Article  PubMed  CAS  Google Scholar 

  57. Radak Z, Chung HY, Koltai E, Taylor AW, Goto S (2008) Exercise, oxidative stress and hormesis. Ageing Res Rev 7(1):34–42. doi:10.1016/j.arr.2007.04.004

    Article  PubMed  CAS  Google Scholar 

  58. Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M (2012) Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid redox Signal. doi:10.1089/ars.2011.4498

  59. Ramsden CE, Faurot KR, Carrera-Bastos P, Cordain L, De Lorgeril M, Sperling LS (2009) Dietary fat quality and coronary heart disease prevention: a unified theory based on evolutionary, historical, global, and modern perspectives. Curr Treat options in Cardiovasc Med 11(4):289–301

    Article  Google Scholar 

  60. Rector RS, Thyfault JP, Laye MJ, Morris RT, Borengasser SJ, Uptergrove GM, Chakravarthy MV, Booth FW, Ibdah JA (2008) Cessation of daily exercise dramatically alters precursors of hepatic steatosis in Otsuka Long-Evans Tokushima Fatty (OLETF) rats. J Physiol 586(Pt 17):4241–4249. doi:10.1113/jphysiol.2008.156745

    Article  PubMed  CAS  Google Scholar 

  61. Rhee SG (2006) Cell signaling. H2O2, a necessary evil for cell signaling. Science 312(5782):1882–1883. doi:10.1126/science.1130481

    Article  PubMed  Google Scholar 

  62. Rippe C, Lesniewski L, Connell M, LaRocca T, Donato A, Seals D (2010) Short-term calorie restriction reverses vascular endothelial dysfunction in old mice by increasing nitric oxide and reducing oxidative stress. Aging cell 9(3):304–312. doi:10.1111/j.1474-9726.2010.00557.x

    Article  PubMed  CAS  Google Scholar 

  63. Ristow M, Zarse K, Oberbach A, Kloting N, Birringer M, Kiehntopf M, Stumvoll M, Kahn CR, Bluher M (2009) Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci U S A 106(21):8665–8670. doi:10.1073/pnas.0903485106

    Article  PubMed  CAS  Google Scholar 

  64. Schinzari F, Tesauro M, Rovella V, Galli A, Mores N, Porzio O, Lauro D, Cardillo C (2010) Generalized impairment of vasodilator reactivity during hyperinsulinemia in patients with obesity-related metabolic syndrome. Am J Physiol Endocrinol Metab 299(6):E947–E952. doi:10.1152/ajpendo.00426.2010

    Article  PubMed  CAS  Google Scholar 

  65. Seals DR, Walker AE, Pierce GL, Lesniewski LA (2009) Habitual exercise and vascular ageing. J Physiol 587(Pt 23):5541–5549. doi:10.1113/jphysiol.2009.178822

    Article  PubMed  CAS  Google Scholar 

  66. Steinberg D, Witztum JL (2002) Is the oxidative modification hypothesis relevant to human atherosclerosis? Do the antioxidant trials conducted to date refute the hypothesis? Circulation 105(17):2107–2111

    Article  PubMed  Google Scholar 

  67. Tabata M, Kadomatsu T, Fukuhara S, Miyata K, Ito Y, Endo M, Urano T, Zhu HJ, Tsukano H, Tazume H, Kaikita K, Miyashita K, Iwawaki T, Shimabukuro M, Sakaguchi K, Ito T, Nakagata N, Yamada T, Katagiri H, Kasuga M, Ando Y, Ogawa H, Mochizuki N, Itoh H, Suda T, Oike Y (2009) Angiopoietin-like protein 2 promotes chronic adipose tissue inflammation and obesity-related systemic insulin resistance. Cell Metab 10(3):178–188. doi:10.1016/j.cmet.2009.08.003

    Article  PubMed  CAS  Google Scholar 

  68. Taylor R, Thoma K (1985) Mortality patterns in the modernized Pacific Island nation of Nauru. Am J Public Health 75(2):149–155

    Article  PubMed  CAS  Google Scholar 

  69. Tazume H, Miyata K, Tian Z, Endo M, Horiguchi H, Takahashi O, Horio E, Tsukano H, Kadomatsu T, Nakashima Y, Kunitomo R, Kaneko Y, Moriyama S, Sakaguchi H, Okamoto K, Hara M, Yoshinaga T, Yoshimura K, Aoki H, Araki K, Hao H, Kawasuji M, Oike Y (2012) Macrophage-derived angiopoietin-like protein 2 accelerates development of abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol 32(6):1400–1409. doi:10.1161/ATVBAHA.112.247866

    Article  PubMed  CAS  Google Scholar 

  70. Thorin E, Meerkin D, Bertrand OF, Paiement P, Joyal M, Bonan R (2000) Influence of postangioplasty beta-irradiation on endothelial function in porcine coronary arteries. Circulation 101(12):1430–1435

    Article  PubMed  CAS  Google Scholar 

  71. Ullrich V, Bachschmid M (2000) Superoxide as a messenger of endothelial function. Biochem Biophys Res Commun 278(1):1–8. doi:10.1006/bbrc.2000.3733

    Article  PubMed  CAS  Google Scholar 

  72. Ungvari Z, Kaley G, de Cabo R, Sonntag WE, Csiszar A (2010) Mechanisms of vascular aging: new perspectives. J Gerontol A Biol Sci Med Sci 65(10):1028–1041. doi:10.1093/gerona/glq113

    Article  PubMed  Google Scholar 

  73. Vanhoutte PM (2009) Endothelial dysfunction: the first step toward coronary arteriosclerosis. Circ J: Off J Japan Circ Soc 73(4):595–601

    CAS  Google Scholar 

  74. Versari D, Daghini E, Virdis A, Ghiadoni L, Taddei S (2009) Endothelial dysfunction as a target for prevention of cardiovascular disease. Diabetes Care 32(Suppl 2):S314–S321. doi:10.2337/dc09-S330

    Article  PubMed  CAS  Google Scholar 

  75. Voghel G, Thorin-Trescases N, Farhat N, Nguyen A, Villeneuve L, Mamarbachi AM, Fortier A, Perrault LP, Carrier M, Thorin E (2007) Cellular senescence in endothelial cells from atherosclerotic patients is accelerated by oxidative stress associated with cardiovascular risk factors. Mech Ageing Dev 128(11–12):662–671. doi:10.1016/j.mad.2007.09.006

    Article  PubMed  CAS  Google Scholar 

  76. Wen CP, Wai JP, Tsai MK, Yang YC, Cheng TY, Lee MC, Chan HT, Tsao CK, Tsai SP, Wu X (2011) Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet 378(9798):1244–1253. doi:10.1016/S0140-6736(11)60749-6

    Article  PubMed  Google Scholar 

  77. Yang H, Roberts LJ, Shi MJ, Zhou LC, Ballard BR, Richardson A, Guo ZM (2004) Retardation of atherosclerosis by overexpression of catalase or both Cu/Zn-superoxide dismutase and catalase in mice lacking apolipoprotein E. Circ Res 95(11):1075–1081. doi:10.1161/01.RES.0000149564.49410.0d

    Article  PubMed  CAS  Google Scholar 

  78. Yen MH, Yang JH, Sheu JR, Lee YM, Ding YA (1995) Chronic exercise enhances endothelium-mediated dilation in spontaneously hypertensive rats. Life Sci 57(24):2205–2213

    Article  PubMed  CAS  Google Scholar 

  79. Zou JG, Wang ZR, Huang YZ, Cao KJ, Wu JM (2003) Effect of red wine and wine polyphenol resveratrol on endothelial function in hypercholesterolemic rabbits. Int J Mol Med 11(3):317–320

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the staff of the animal facility of the Montreal Heart Institute. This study was supported by the Canadian Institutes for Health Research (E.T. MOP#14496). F. Leblond is supported by a Banting and Best Ph.D. scholarship from the Canadian Institutes for Health Research.

Ethical standard

The experiments comply with the current laws of Canada in which they were performed.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Thorin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM (DOCX 16589 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leblond, F., Nguyen, A., Bolduc, V. et al. Postnatal exposure to voluntary exercise but not the antioxidant catechin protects the vasculature after a switch to an atherogenic environment in middle-age mice. Pflugers Arch - Eur J Physiol 465, 197–208 (2013). https://doi.org/10.1007/s00424-012-1206-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-012-1206-8

Keywords

Navigation