Skip to main content

Advertisement

Log in

Lipid peroxidation and antioxidant status in rat: effect of food restriction and wheel running

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Using the activity-based anorexia model, the aim of this investigation was to explore antioxidant enzyme activity (catalase, superoxide dismutase), total antioxidant status (TAS), and alpha-tocopherol in blood, liver, and gastrocnemius muscle associated with the food restriction and voluntary wheel running during 8 days. In addition, lipid peroxidation was measured by measurements of malondialdehyde (MDA). Wistars rats (n = 56) were randomly assigned to one of four groups: an ad lib sedentary group, a control wheel activity group, a food restriction-induced hyperactivity group (1 h/day ad lib food, 23 h/day ad lib wheel access), and a food-restricted sedentary group. The animals were killed when the rats in the food-restricted group had lost 25% of their free feeding weight. Antioxidant enzyme activities and TAS in blood, liver, and gastrocnemius muscle were unaffected by voluntary wheel running. A wheel activity effect (P < 0.05) was obtained for the MDA concentrations in plasma, with lower concentrations in trained animals. Food restriction effects were obtained for antioxidant capacity in liver, as well as for CAT activity in the gastrocnemius muscle and plasma MDA concentrations with lower values in the restricted animals. On the other hand, the food-restricted rats showed higher plasma TAS concentrations (P < 0.05) and higher alpha-tocopherol concentrations in the liver (P < 0.05) when compared to animals fed ad libitum. Our results also showed that food restriction coupled to wheel running decreased antioxidant parameters in liver, and plasmatic MDA concentrations and increased TAS plasma concentrations when compared to the ad libitum sedentary situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aebi H, Wyss SR, Scherz B, Svaril F (1974) Heterogeneity of erythrocyte catalase II. Isolation and characterization of normal and variant erythrocyte catalase and their subunits. Eur J Biochem 48:137–145. doi:10.1111/j.1432-1033.1974.tb03751.x

    Article  PubMed  CAS  Google Scholar 

  • Agarwal R, Chase S (2002) Rapid, fluorimetric-liquid chromatographic determination of malondialdehyde in biological samples. J Chromatogr B 775:121–126. doi:10.1016/S1570-0232(02)00273-8

    Article  CAS  Google Scholar 

  • Beals KA (2004) Disordered eating among athletes: a comprehensive guide for health professionals. Human Kinetics, Champaign

  • Beneke WM, Schulte SE, Vander Tuig JG (1995) An analysis of excessive running in the development of activity anorexia. Physiol Behav 58:451–457. doi:10.1016/0031-9384(95)00083-U

    Article  PubMed  CAS  Google Scholar 

  • Bevilacqua L, Ramsey JJ, Hagopian K, Weindruch R, Harper ME (2004) Effects of short- and medium-term calorie restriction on muscle mitochondrial proton leak and reactive oxygen species production. Am J Physiol Endocrinol Metab 286:E852–E861. doi:10.1152/ajpendo.00367.2003

    Article  PubMed  CAS  Google Scholar 

  • Bevilacqua L, Ramsey JJ, Hagopian K, Weindruch R, Harper ME (2005) Long-term caloric restriction increases UCP3 content but decreases proton leak and reactive oxygen species production in rat skeletal muscle mitochondria. Am J Physiol Endocrinol Metab 289:E429–E438. doi:10.1152/ajpendo.00435.2004

    Article  PubMed  CAS  Google Scholar 

  • Duclos M, Bouchet M, Vettier A, Richard D (2005) Genetic differences in hypothalamic–pituitary–adrenal axis activity and food restriction-induced hyperactivity in three inbred strains of rats. J Neuroendocrinol 17:740–752. doi:10.1111/j.1365-2826.2005.01367.x

    Article  PubMed  CAS  Google Scholar 

  • Epling WF, Pierce WD (1988) Activity-based anorexia: a biobehavioral perspective. Int J Eat Disord 7:475–485. doi:10.1002/1098-108X(198807)7:4<475::AID-EAT2260070405>3.0.CO;2-M

    Article  Google Scholar 

  • Gong X, Shang F, Obin M, Palmer H, Scrofano MM, Jahngen-Hodge J, Smith DE, Allen Taylor A (1997) Antioxidant enzyme activities in lens, liver and kidney of calorie restricted Emory mice. Mech Ageing Dev 30:181–192. doi:10.1016/S0047-6374(97)00102-4

    Article  Google Scholar 

  • Gredilla R, Sanz A, Lopez-Torres M, Barja G (2001) Caloric restriction decreases mitochondrial free radical generation at complex I and lowers oxidative damage to mitochondrial DNA in the rat heart. FASEB 15:1589–1591

    CAS  Google Scholar 

  • Gredilla R, Phaneuf S, Selman C, Kendaiah S, Leeuwenburgh C, Barja G (2004) Short-term caloric restriction and sites of oxygen radical generation in kidney and skeletal muscle mitochondria. N Y Acad Sci 1019:333–342. doi:10.1196/annals.1297.057

    Article  CAS  Google Scholar 

  • Hatam LJ, Kayden HJ (1979) A high performance liquid chromatographic method for the determination of tocopherol in plasma and cellular elements of the blood. J Lipid Res 20:639–645

    PubMed  CAS  Google Scholar 

  • Ichikawa M, Fujita Y, Ebisawa H, Ozeki T (2000) Effects of long-term, light exercise under restricted feeding on age-related changes in physiological and metabolic variables in male Wistar rats. Mech Ageing Dev 24:23–35. doi:10.1016/S0047-6374(99)00093-7

    Article  Google Scholar 

  • Judge S, Jang YM, Anthony Smith A, Selman C, Phillips T, Speakman JR, Hagen T, Leeuwenburgh C (2005) Exercise by lifelong voluntary wheel running reduces subsarcolemmal and interfibrillar mitochondrial hydrogen peroxide production in the heart. Am J Physiol Regul Integr Comp Physiol 289:R1564–R1572. doi:10.1152/ajpregu.00396.2005

    PubMed  CAS  Google Scholar 

  • Kamzalov S, Sohal RS (2004) Effect of age and caloric restriction on coenzyme Q and alpha-tocopherol levels in the rat. Exp Gerontol 39:1199–1205. doi:10.1016/j.exger.2004.04.007

    Article  PubMed  CAS  Google Scholar 

  • Kim JD, Yu BP, McCarter RJM, Lee SY, Herlihy JT (1996a) Exercise and diet modulate cardiac lipid peroxidation and antioxidant defenses. Free Radic Biol Med 20:83–88. doi:10.1016/0891-5849(95)02023-3

    Article  PubMed  CAS  Google Scholar 

  • Kim JD, McCarter RJM, Yu BP (1996b) Influence of age, exercise, and dietary restriction on oxidative stress in rats. Aging Clin Exp Res 2:123–129

    CAS  Google Scholar 

  • Kim JH, Kwak HB, Leeuwenburgh C, Lawler JM (2008) Lifelong exercise and mild (8%) caloric restriction attenuate age-induced alterations in plantaris muscle morphology, oxidative stress and IGF-1 in the Fischer-344 rat. Exp Gerontol 43:317–329. doi:10.1016/j.exger.2007.12.012

    Article  PubMed  CAS  Google Scholar 

  • Koubova J, Guarente L (2003) How does calorie restriction work? Genes Dev 17:313–321. doi:10.1101/gad.1052903

    Article  PubMed  CAS  Google Scholar 

  • Kron L, Katz JL, Gorzynski G, Weiner H (1978) Hyperactivity in anorexia nervosa: a fundamental clinical feature. Compr Psychiatry 5:433–440. doi:10.1016/0010-440X(78)90072-X

    Article  Google Scholar 

  • Lee DW, Yu BP (1990) Modulation of free radicals and superoxide dismutase by age and dietary restriction. Aging 2:357–362

    PubMed  CAS  Google Scholar 

  • Leeuwenburgh C, Wagner P, Holloszy JO, Sohal RS, Heinecke JW (1997) Caloric restriction attenuates dityrosine cross-linking of cardiac and skeletal muscle proteins in aging mice. Arch Biochem Biophys 346:74–80. doi:10.1006/abbi.1997.0297

    Article  PubMed  CAS  Google Scholar 

  • Leewenburgh C, Hansen PA, Holloszy JO, Heinecke JW (1999) Oxidized amino acids in the urine of aging rats: potential markers for assessing oxidative stress in vivo. Am J Physiol 276:R128–R135

    Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474. doi:10.1111/j.1432-1033.1974.tb03714.x

    Article  PubMed  CAS  Google Scholar 

  • McCarter R, Masoro EJ, Yu BP (1985) Does food restriction retard aging by reducing the metabolic rate? Am J Physiol 248:E488–E490

    PubMed  CAS  Google Scholar 

  • Miller NJ, Rice-Evans C, Davies MJ, Gopinathan V, Milner A (1993) A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci 84:407–412

    PubMed  CAS  Google Scholar 

  • Pinho RA, Andrades ME, Oliveira MR, Pirola AC, Zago MS, Silveira PC, Dal-Pizzol Moreira FJC (2006) Imbalance in SOD/CAT activities in rat skeletal muscles submitted to treadmill training exercise. Cell Biol Int 30:848–853. doi:10.1016/j.cellbi.2006.03.011

    Article  PubMed  CAS  Google Scholar 

  • Radak Z, Taylor AW, Ohno H, Goto S (2001) Adaptation to exercise-induced oxidative stress: from muscle to brain. Exerc Immunol Rev 7:90–107

    PubMed  CAS  Google Scholar 

  • Rikans LE, Moore DR (1988) Effect of aging on aqueous-phase antioxidants in tissues of male Fischer rats. Biochim Biophys Acta 966:269–275

    PubMed  CAS  Google Scholar 

  • Selman C, McLaren JS, Collins AR, Duthie GG, Speakman JR (2002) Antioxidant enzyme activities, lipid peroxidation, and DNA oxidative damage: the effects of short-term voluntary wheel running. Arch Biochem Biophys 401:255–261. doi:10.1016/S0003-9861(02)00050-4

    Article  PubMed  CAS  Google Scholar 

  • Seo AY, Hofer T, Sung B, Judge S, Chung HY, Leeuwenburgh C (2006) Hepatic oxidative stress during aging: effects of 8% long-term calorie restriction and lifelong exercise. Antioxid Redox Signal 8:529–538. doi:10.1089/ars.2006.8.529

    Article  PubMed  CAS  Google Scholar 

  • Sharifi AM, Mohseni S, Nekoparvar S, Larijani B, Fakhrzadeh H, Oryan S (2008) Effect of caloric restriction on nitric oxide production, ACE activity, and blood pressure regulation in rats. Acta Physiol Hung 95:55–63. doi:10.1556/APhysiol.95.2008.1.3

    Article  PubMed  CAS  Google Scholar 

  • Smith NJ (1980) Excessive weight loss and food aversion in athletes simulating anorexia nervosa. Pediatrics 66:139–142

    PubMed  CAS  Google Scholar 

  • Venditti P, Masullo P, Di Meo S (1999) Effect of training on H2O2 release by mitochondria from rat skeletal muscle. Arch Biochem Biophys 372:315–320. doi:10.1006/abbi.1999.1494

    Article  PubMed  CAS  Google Scholar 

  • Weindruch R, Warner HR, Starker-Reed PE (1993) Future directions of free radical research in aging. In: Yu BP (ed) Free radicals and aging. CRC Press, Boca Raton, pp 269–295

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edith Filaire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filaire, E., Rouveix, M., Massart, A. et al. Lipid peroxidation and antioxidant status in rat: effect of food restriction and wheel running. Eur J Appl Physiol 107, 243–250 (2009). https://doi.org/10.1007/s00421-009-1121-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-009-1121-7

Keywords

Navigation