Skip to main content

Advertisement

Log in

Ideomotor feedback control in a recurrent neural network

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The architecture of a neural network controlling an unknown environment is presented. It is based on a randomly connected recurrent neural network from which both perception and action are simultaneously read and fed back. There are two concurrent learning rules implementing a sort of ideomotor control: (i) perception is learned along the principle that the network should predict reliably its incoming stimuli; (ii) action is learned along the principle that the prediction of the network should match a target time series. The coherent behavior of the neural network in its environment is a consequence of the interaction between the two principles. Numerical simulations show a promising performance of the approach, which can be turned into a local and better “biologically plausible” algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adams RA, Shipp S, Friston KJ (2013) Predictions not commands: active inference in the motor system. Brain Struct Funct 218(3):611–643

    Article  PubMed Central  PubMed  Google Scholar 

  • Åström KJ (2006) Introduction to stochastic control theory. Courier Dover Publications, New York

    Google Scholar 

  • Åström KJ, Hägglund T (2006) Advanced PID control. ISA-The Instrumentation, Systems, and Automation Society, Research Triangle Park

    Google Scholar 

  • Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Oxford

    Google Scholar 

  • Butler AB, Hodos W (2005) Comparative vertebrate neuroanatomy: evolution and adaptation. Wiley, New York

    Book  Google Scholar 

  • Chow TW, Fang Y (1998) A recurrent neural-network-based real-time learning control strategy applying to nonlinear systems with unknown dynamics. IEEE Trans Ind Electron 45(1):151–161

    Article  Google Scholar 

  • Conant RC, Ashby W (1970) Every good regulator of a system must be a model of that system. Int J Syst Sci 1(2):89–97

    Article  Google Scholar 

  • Doya K (1993) Bifurcations of recurrent neural networks in gradient descent learning. IEEE Trans Neural Netw 1:75–80

    Google Scholar 

  • Ecker AS, Berens P, Keliris GA, Bethge M, Logothetis NK, Tolias AS (2010) Decorrelated neuronal firing in cortical microcircuits. Science 327(5965):584–587

    Article  CAS  PubMed  Google Scholar 

  • Farhang-Boroujeny B (1998) Adaptive filters: theory and applications. Wiley, New York

    Google Scholar 

  • Fortmann TE, Hitz KL (1977) An introduction to linear control systems. CRC Press, Boca Raton

    Google Scholar 

  • Friston KJ, Daunizeau J, Kilner J, Kiebel SJ (2010) Action and behavior: a free-energy formulation. Biol Cybern 102(3):227–260

    Article  PubMed  Google Scholar 

  • Gálvez-Carrillo M, De Keyser R, Ionescu C (2009) Nonlinear predictive control with dead-time compensator: application to a solar power plant. Solar Energy 83(5):743–752

    Article  Google Scholar 

  • Ge S, Hang CC, Lee TH, Zhang T (2010) Stable adaptive neural network control. Springer, New York

    Google Scholar 

  • Ge SS, Yang C, Lee TH (2008) Adaptive predictive control using neural network for a class of pure-feedback systems in discrete time. IEEE Trans Neural Netw 19(9):1599–1614

    Article  PubMed  Google Scholar 

  • Gerstner W, Kistler WM (2002) Mathematical formulations of hebbian learning. Biol Cybern 87(5–6):404–415

    Article  PubMed  Google Scholar 

  • Greenwald AG (1970) Sensory feedback mechanisms in performance control: with special reference to the ideo-motor mechanism. Psychol Rev 77(2):73

    Article  CAS  PubMed  Google Scholar 

  • Gunnarsson S (1996) Combining tracking and regularization in recursive least squares identification. In: IEEE Conference on Decision and Control, vol 3, pp 2551–2552. Citeseer

  • Haykin SO (2014) Adaptive filter theory, 5th edn. Pearson Education. http://www.pearsonhighered.com/educator/product/Adaptive-Filter-Theory/9780132671453.page

  • Jaeger H (2001) The “echo state”approach to analysing and training recurrent neural networks-with an erratum note. Bonn, Germany: German National Research Center for Information Technology GMD Technical Report 148:34

  • Jaeger H, Haas H (2004) Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667):78–80

    Article  CAS  PubMed  Google Scholar 

  • Jaeger H, Lukosevicius M, Popovici D, Siewert U (2007) Optimization and applications of Echo State Networks with leaky-integrator neurons. Neural Netw 20(3):335–352

    Article  PubMed  Google Scholar 

  • Jordan MI (1996) Computational aspects of motor control and motor learning. Handb Percept Action Motor Skills 2:71–118

    Google Scholar 

  • Jordan MI, Rumelhart DE (1992) Forward models: supervised learning with a distal teacher. Cogn Sci 16(3):307–354

    Article  Google Scholar 

  • Kawato M, Furukawa K, Suzuki R (1987) A hierarchical neural-network model for control and learning of voluntary movement. Biol Cybern 57(3):169–185

    Article  CAS  PubMed  Google Scholar 

  • Kwakernaak H, Sivan R (1972) Linear optimal control systems, vol 1. Wiley, New York

    Google Scholar 

  • Laje R, Buonomano DV (2013) Robust timing and motor patterns by taming chaos in recurrent neural networks. Nat Neurosci 16(7):925–933

  • Narendra KS, Parthasarathy K (1990) Identification and control of dynamical systems using neural networks. IEEE Trans Neural Netw 1(1):4–27

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Wang J (2012) Model predictive control of unknown nonlinear dynamical systems based on recurrent neural networks. IEEE Trans Ind Electron 59(8):3089–3101

    Article  Google Scholar 

  • Pearlmutter BA (1995) Gradient calculations for dynamic recurrent neural networks: a survey. IEEE Trans Neural Netw 6(5):1212–1228

    Article  CAS  PubMed  Google Scholar 

  • Prokhorov DV (2007) Training recurrent neurocontrollers for real-time applications. IEEE Trans Neural Netw 18(4):1003–1015

    Article  PubMed  Google Scholar 

  • Renart A, de la Rocha J, Bartho P, Hollender L, Parga N, Reyes A, Harris KD (2010) The asynchronous state in cortical circuits. Science 327(5965):587–590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seamans J, Durstewitz D (2008) Dopamine modulation. Scholarpedia 3(4):2711

    Article  Google Scholar 

  • Shin YK, Proctor RW, Capaldi E (2010) A review of contemporary ideomotor theory. Psychol Bull 136(6):943

    Article  PubMed  Google Scholar 

  • Skogestad S, Postlethwaite I (2007) Multivariable feedback control: analysis and design, vol 2. Wiley, New York

    Google Scholar 

  • Slotine J-JE, Li W et al (1991) Applied nonlinear control, vol 199. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Sontag ED (1997) Recurrent neural networks: Some systems-theoretic aspects. In: Karny M, Warwick K, Kurkova V (eds) Dealing with complexity: a neural network approach. Springer, London, pp 1–12

    Google Scholar 

  • Sussillo D, Abbott LF (2009) Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4):544–557

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tani J (1996) Model-based learning for mobile robot navigation from the dynamical systems perspective. IEEE Trans Syst Man Cybern Part B Cybern 26(3):421–436

    Article  CAS  Google Scholar 

  • Waegeman T, Wyffels F, Schrauwen B (2012) Feedback control by online learning an inverse model. IEEE Trans Neural Netw Learn Syst 23(10):1637–1648

    Article  PubMed  Google Scholar 

  • Wang C, Hill DJ (2006) Learning from neural control. IEEE Trans Neural Netw 17(1):130–146

    Article  PubMed  Google Scholar 

  • Yang C, Ge SS, Xiang C, Chai T, Lee TH (2008) Output feedback nn control for two classes of discrete-time systems with unknown control directions in a unified approach. IEEE Trans Neural Netw 19(11):1873–1886

    Article  PubMed  Google Scholar 

  • Zhong-Sheng H (2006) On model-free adaptive control: the state of the art and perspective. Control Theory Appl 4:018

    Article  Google Scholar 

Download references

Acknowledgments

I thank Herbert Jaeger, Michael Thon, Jochen Steil, Felix Reinhart, and Benjamin Schrauwen for helpful discussions. I was funded by the European project AMARSI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Galtier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galtier, M. Ideomotor feedback control in a recurrent neural network. Biol Cybern 109, 363–375 (2015). https://doi.org/10.1007/s00422-015-0648-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-015-0648-4

Keywords

Navigation