Skip to main content

Inferring Adaptive Goal-Directed Behavior Within Recurrent Neural Networks

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2017 (ICANN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10613))

Included in the following conference series:

Abstract

This paper shows that active-inference-based, flexible, adaptive goal-directed behavior can be generated by utilizing temporal gradients in a recurrent neural network (RNN). The RNN learns a dynamical sensorimotor forward model of a partially observable environment. It then uses this model to execute goal-directed policy inference online. The internal neural activities encode the predictive state of the controlled entity. The active inference process projects these activities into the future via the RNN’s recurrences, following a tentative sequence of motor commands. This sequence is adapted by back-projecting error between the forward-projected hypothetical states and the desired goal states onto the motor commands. As an example, we show that a trained RNN model can be used to precisely control a multi-copter-like system. Moreover, we show that the RNN can plan hundreds of time steps ahead, unfolding non-linear imaginary paths around obstacles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Butz, M.V., Herbort, O., Hoffmann, J.: Exploiting redundancy for flexible behavior: unsupervised learning in a modular sensorimotor control architecture. Psychol. Rev. 114, 1015–1046 (2007)

    Article  Google Scholar 

  2. Butz, M.V.: Towards a unified sub-symbolic computational theory of cognition. Fronti. Psychol. 7(925) (2016)

    Google Scholar 

  3. Friston, K.: The free-energy principle: a rough guide to the brain? Trends Cogn. Sci. 13(7), 293–301 (2009)

    Article  Google Scholar 

  4. Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., Pezzulo, G.: Active inference: a process theory. Neural Comput. 29(1), 1–49 (2016)

    Article  Google Scholar 

  5. Friston, K.J., Daunizeau, J., Kilner, J., Kiebel, S.J.: Action and behavior: a free-energy formulation. Biol. Cybern. 102(3), 227–260 (2010)

    Article  Google Scholar 

  6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  7. Jordan, M.I., Rumelhart, D.E.: Forward models: supervised learning with a distal teacher. Cogn. Sci. 16, 307–354 (1992)

    Article  Google Scholar 

  8. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: 3rd International Conference for Learning Representations abs/1412.6980 (2015)

    Google Scholar 

  9. Otte, S., Krechel, D., Liwicki, M.: JANNLab neural network framework for Java. In: Poster Proceedings MLDM 2013, pp. 39–46. ibai-publishing, New York (2013)

    Google Scholar 

  10. Otte, S., Liwicki, M., Zell, A.: Dynamic cortex memory: enhancing recurrent neural networks for gradient-based sequence learning. In: Wermter, S., Weber, C., Duch, W., Honkela, T., Koprinkova-Hristova, P., Magg, S., Palm, G., Villa, A.E.P. (eds.) ICANN 2014. LNCS, vol. 8681, pp. 1–8. Springer, Cham (2014). doi:10.1007/978-3-319-11179-7_1

    Google Scholar 

  11. Otte, S., Liwicki, M., Zell, A.: An analysis of dynamic cortex memory networks. In: International Joint Conference on Neural Networks (IJCNN), pp. 3338–3345. Killarney, Ireland, Jul 2015

    Google Scholar 

  12. Otte, S., Zwiener, A., Hanten, R., Zell, A.: Inverse recurrent models – an application scenario for many-joint robot arm control. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9886, pp. 149–157. Springer, Cham (2016). doi:10.1007/978-3-319-44778-0_18

    Chapter  Google Scholar 

  13. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction (1998)

    Google Scholar 

  14. Werbos, P.: Backpropagation through time: what it does and how to do it. Proc. IEEE 78(10), 1550–1560 (1990)

    Article  Google Scholar 

  15. Wolpert, D.M., Kawato, M.: Multiple paired forward and inverse models for motor control. Neural Netw. 11, 1317–1329 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Otte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Otte, S., Schmitt, T., Friston, K., Butz, M.V. (2017). Inferring Adaptive Goal-Directed Behavior Within Recurrent Neural Networks. In: Lintas, A., Rovetta, S., Verschure, P., Villa, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2017. ICANN 2017. Lecture Notes in Computer Science(), vol 10613. Springer, Cham. https://doi.org/10.1007/978-3-319-68600-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68600-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68599-1

  • Online ISBN: 978-3-319-68600-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics