Skip to main content
Log in

Association between ACE D allele and elite short distance swimming

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The influence of ACE gene on athletic performance has been widely explored, and most of the published data refers to an I/D polymorphism leading to the presence (I allele) or absence (D allele) of a 287-bp sequence in intron 16, determining ACE activity in serum and tissues. A higher I allele frequency has been reported among elite endurance athletes, while the D allele was more frequent among those engaged in more power-orientated sports. However, on competitive swimming, the reproducibility of such associations is controversial. We thus compared the ACE genotype of elite swimmers with that of non-elite swimming cohort and of healthy control subjects. We thus sought an association of the ACE genotype of elite swimmers with their competitive distance. 39 Portuguese Olympic swimming candidates were classified as: short (<200 m) and middle (400–1,500 m) distance swimmers, respectively. A group of 32 non-elite swimmers were studied and classified as well, and a control group (n = 100) was selected from the Portuguese population. Chelex 100 was used for DNA extraction and genotype was determined by PCR-RFLP methods. We found that ACE genotype distribution and allelic frequency differs significantly by event distance only among elite swimmers (P ≤ 0.05). Moreover, the allelic frequency of the elite short distance swimmers differed significantly from that of the controls (P = 0.021). No associations were found between middle distance swimmers and controls. Our results seem to support an association between the D allele and elite short distance swimming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alvarez R, Terrados N, Ortolano R, Iglesias-Cubero G, Reguero J, Batalla A, Cortina A, Fernández-García B, Rodríguez C, Braga S, Alvarez V, Coto E (2000) Genetic variation in the renin-angiotensin system and athletic performance. Eur J Appl Physiol 82:117–120. doi:10.1007/s004210050660

    Article  PubMed  CAS  Google Scholar 

  • Cambien F, Costerousse O, Tiret L, Poirier O, Lecerf L, Gonzales M, Evans A, Arveiler D, Cambou J, Luc G (1994) Plasma level and gene polymorphism of angiotensinconverting enzyme in relation to myocardial infarction. Circulation 90:669–676

    PubMed  CAS  Google Scholar 

  • Cerit M, Colakoglu M, Erdogan M, Berdeli A, Cam F (2006) Relationship between ACE genotype and short duration aerobic performance development. Eur J Appl Physiol 98:461–465. doi:10.1007/s00421-006-0286-6

    Article  PubMed  Google Scholar 

  • Collins M, Xenophontos S, Carilou M, Mokone G, Hudson D, Anastasiades L, Noakes T (2004) The ACE gene and endurance performance during the South African Ironman triathlons. Med Sci Sports Exerc 36(8):1314–1320. doi:10.1249/01.MSS.0000135779.41475.42

    Article  PubMed  CAS  Google Scholar 

  • Costerousse O, Allegrini J, Lopez M, Alhenc-Gelas F (1993) Angiotensin I-converting enzyme in human circulating mononuclear cells: genetic polymorphism of expression in T-lymphocytes. Biochem J 290(Pt 1):33–40

    PubMed  CAS  Google Scholar 

  • Danser A, Schalekamp M, Bax W, Van-den-Brink A, Saxena P, Riegger G (1995) Angiotensin-converting enzyme in the human heart: effect of the deletion/insertion polymorphism. Circulation 92:1387–1388

    PubMed  CAS  Google Scholar 

  • Day S, Gohlke P, Dhamrait S, Williams A (2007) No correlation between circulating ACE activity and VO2max or mechanical efficiency in women. Eur J Appl Physiol 99(1):11–18. doi:10.1007/s00421-006-0309-3

    Article  PubMed  CAS  Google Scholar 

  • Dragovic T, Minhall R, Jackman HL, Wang L-X, Erdos EG (1996) Kininase II-type enzymes: their putative role in muscle energy metabolism. Diabetes 45(Suppl 1):S34–S37

    PubMed  Google Scholar 

  • Dzau VJ (1988) Circulating vs local renin-angiotensin system in cardiovascular homeostasis. Circulation 77(Suppl 1):I4–I13

    PubMed  CAS  Google Scholar 

  • Fatini C, Guazzelli R, Manetti P, Battaglini B, Gensini F, Vono R, Toncelli L, Zilli P, Capalbo A, Abbate R, Gensini GF, Galanti G (2000) RAS genes influence exercise-induced left ventricular hypertrophy: an elite athletes study. Med Sci Sports Exerc 32(11):1868–1872. doi:10.1097/00005768-200011000-00008

    Article  PubMed  CAS  Google Scholar 

  • Fischer M, Baessler A, Schunkert H (2002) Renin angiotensin system and gender differences in the cardiovascular system. Cardiovasc Res 53(3):672–677. doi:10.1016/S0008-6363(01)00479-5

    Article  PubMed  CAS  Google Scholar 

  • Folland J, Leach B, Little T, Hawker K, Myerson S, Montgomery H, Jones D (2000) Angiotensin-converting enzyme genotype affects the response of human skeletal muscle to functional overload. Exp Physiol 85(5):575–579. doi:10.1017/S0958067000020571

    Article  PubMed  CAS  Google Scholar 

  • Gayagay G, Yu B, Hambly B, Boston T, Hahn A, Celermajer D, Trent R (1998) Elite endurance athletes and the ACE I allele: the role of genes in athletic performance. Hum Genet 103(1):48–50. doi:10.1007/s004390050781

    Article  PubMed  CAS  Google Scholar 

  • Hagberg JM, Ferrell RE, McCole SD, Wilund KR, Moore GE (1998) VO2max is associated with ACE genotype in postmenopausal women. J Appl Physiol 85(5):1842–1846

    PubMed  CAS  Google Scholar 

  • Hagberg JM, McCole SD, Brown MD, Ferrell RE, Wilund KR, Huberty A, Douglass LW, Moore GE (2002) ACE insertion/deletion polymorphism and submaximal exercise hemodynamics in post menopausal women. J Appl Physiol 92(3):1083–1088

    PubMed  CAS  Google Scholar 

  • Hernandez D, De la Rosa A, Barragan A, Barrios Y, Salido E, Torres A, Martín B, Laynez I, Duque A, De Vera A, Lorenzo V, González A (2003) The ACE/DD genotype is associated with the extent of exercise-induced left ventricular growth in endurance athletes. J Am Coll Cardiol 42:527–532. doi:10.1016/S0735-1097(03)00642-9

    Article  PubMed  CAS  Google Scholar 

  • Jonsson JR, Game PA, Head RJ, Frewin DB (1994) The expression and localisation of the angiotensin-converting enzyme mRNA in human adipose tissue. Blood Press 3:72–75. doi:10.3109/08037059409101524

    Article  PubMed  CAS  Google Scholar 

  • Kasikcioglu E, Kayserilioglu A, Ciloglu F, Akhan H, Oflaz H, Yildiz S, Peker I (2004) Angiotensin converting enzyme gene polymorphism, left ventricular remodeling, and exercise capacity in strength-trained athletes. Heart Vessels 19:287–293. doi:10.1007/s00380-004-0783-7

    Article  PubMed  Google Scholar 

  • Ledru F, Blanchard D, Battaglia S, Jeunemaitre X, Courbon D, Guize L, Germonprez J-L, Ducimetiere P, Diébold B (1998) Relation between severity of coronary artery disease, left ventricular function and myocardial infarction, and influence of the ACE I/D gene polymorphism. Am J Cardiol 82(2):160–165. doi:10.1016/S0002-9149(98)00304-X

    Article  PubMed  CAS  Google Scholar 

  • Linz W, Scholkens BA (1992) A specific B2-bradykinin receptor antagonist HOE 140 abolishes the antihypertrophic effect of ramipril. Br J Pharmacol 105:771–772

    PubMed  CAS  Google Scholar 

  • Liu Y, Leri A, Li B et al (1998) Angiotensin II stimulation in vitro induces hypertrophy of normal and postinfarcted ventricular myocytes. Circ Res 82:1145–1159

    PubMed  CAS  Google Scholar 

  • Lucia A, Gomez-Gallego F, Chicharro J, Hoyos J, Celaya K, Cordova A, Villa G, Alonso J, Barriopedro M, Perez M, Earnest C (2005) Is there no association between ACE and CKMM polymorphisms and cycling performance status during 3-weeks races? Int J Sports Med 26(6):442–447. doi:10.1055/s-2004-821108

    Article  PubMed  CAS  Google Scholar 

  • Montgomery HE, Clarkson P, Dollery CM, Prasad K, Losi M-A, Hemingway H, Statters D, Jubb M, Girvain M, Varnava A, World M, Deanfield J, Talmud P, McEwan JR, McKenna WJ, Humphries S (1997) Association of angiotensin-converting enzyme gene I/D polymorphism with change in left ventricular mass in response to physical training. Circulation 96:741–747

    PubMed  CAS  Google Scholar 

  • Montgomery H, Clarkson P, Barnard M, Bell J, Brynes A, Dollery C, Hajnal J, Hemingway H, Mercer D, Jarman P, Marshall R, Prasad K, Rayson M, Saeed N, Talmud P, Thomas L, Jubb M, World M, Humphries S (1999) Angiotensin-converting-enzyme gene insertion/deletion polymorphism and response to physical training. Lancet 353(9152):541–545. doi:10.1016/S0140-6736(98)07131-1

    Article  PubMed  CAS  Google Scholar 

  • Moran C, Scott R, Wilson R, Georgiades E, Goodwin W, Wolde B, Pitsiladis Y (2004) Increased frequency of an ACE polymorphism in Ethiopian elite marathon runners. Med Sci Sports Exerc 36(5):S259. doi:10.1097/00005768-200405001-01240

    Google Scholar 

  • Murphey LJ, Gainer JV, Vaughan DE, Brown NJ (2000) Angiotensin-converting enzyme insertion/deletion polymorphism modulates the human in vivo metabolism of bradykinin. Circulation 102:829–832

    PubMed  CAS  Google Scholar 

  • Myerson S, Hemingway H, Budget R, Martin J, Humphries S, Montgomery H (1999) Human angiotensin I-converting enzyme gene and endurance performance. J Appl Physiol 87(4):1313–1316

    PubMed  CAS  Google Scholar 

  • Nazarov I, Woods D, Montgomery H, Shneider O, Kazakov V, Tomilin N, Rogozkin V (2001) The angiotensin converting enzyme I/D polymorphism in Russian athletes. Eur J Hum Genet 9(10):797–801. doi:10.1038/sj.ejhg.5200711

    Article  PubMed  CAS  Google Scholar 

  • Pescatello L, Kostek M, Gordish-dressman H, Thompson P, Seip R, Price T, Angelopoulos T, Clarkson P, Gordon P, Moyna N, Visich P, Zoeller R, Devaney J, Hoffman E (2006) ACE ID genotype and the muscle strength and size response to unilateral resistance training. Med Sci Sports Exerc 38(6):1074–1081. doi:10.1249/01.mss.0000222835.28273.80

    Article  PubMed  CAS  Google Scholar 

  • Rankinen T, Perusse L, Gagnon J, Chagnon Y, Leon A, Skinner J, Wilmore J, Rao D, Bouchard C (2000a) Angiotensin-converting enzyme ID polymorphism and fitness phenotype in the Heritage Family Study. J Appl Physiol 88(3):1029–1035

    PubMed  CAS  Google Scholar 

  • Rankinen T, Wolfarth B, Simoneau JA, Maier-Lenz D, Rauramaa R, Rivera MA, Boulay MR, Chagnon YC, Perusse L, Keul J, Bouchard C (2000b) No association between angiotensin-converting enzyme ID polymorphism and elite endurance athlete status. J Appl Physiol 88:1571–1575

    PubMed  CAS  Google Scholar 

  • Reneland R, Lithel H (1994) Angiotensin-converting enzyme in human skeletal muscle: a simple in vitro assay of activity in needle biopsy specimens. Scand J Clin Lab Invest 54:105–111. doi:10.3109/00365519409086516

    Article  PubMed  CAS  Google Scholar 

  • Rieder M, Taylor S, Clark A, Nickerson D (1999) Sequence variation in the human angiotesin converting enzyme. Nat Genet 22:59–62. doi:10.1038/8760

    Article  PubMed  CAS  Google Scholar 

  • Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F (1990) An insertion/deletion polymorphism in the variance of serum enzyme levels. J Clin Invest 86(4):1343–1346. doi:10.1172/JCI114844

    Article  PubMed  CAS  Google Scholar 

  • Scott R, Moran C, Wilson R, Onywera V, Boit M, Goodwin W, Gohlke P, Payne J, Montgomery H, Pitsiladis Y (2005) No association between Angiotensin Converting Enzyme (ACE) gene variation and endurance athlete status in Kenyans. Comp Biochem Physiol A 141(2):169–175. doi:10.1016/j.cbpb.2005.05.001

    Article  Google Scholar 

  • Taylor R, Mamotte C, Fallon K, Bockxmeer F (1999) Elite athletes and the gene for angiotensin-converting enzyme. J Appl Physiol 87(3):1035–1037

    PubMed  CAS  Google Scholar 

  • Thomis MA, Huygens W, Heuninckx S, Chagnon M, Maes HH, Claessens A, Vlietinck R, Bouchard C, Beunen GP (2004) Exploration of myostatin polymorphism and the angiotensin-converting enzyme insertion/deletion genotype in responses of human muscle to strength training. Eur J Appl Physiol 92:267–274. doi:10.1007/s00421-004-1093-6

    Article  PubMed  CAS  Google Scholar 

  • Tiret L, Rigat B, Visvikis S, Breda C, Corvol P, Cambien F, Soubrier F (1992) Evidence, from combined segregation, and linkage analysis, that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACE levels. Am J Hum Genet 51(1):197–205

    PubMed  CAS  Google Scholar 

  • Tsianos G, Sanders J, Dhamrait S, Humphries S, Grant S, Montgomery H (2004) The ACE gene polymorphism and elite endurance swimming. Eur J Appl Physiol 93(3):360–362

    Google Scholar 

  • Walsh P, Metzger D, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10(4):506–513

    PubMed  CAS  Google Scholar 

  • Williams AG, Rayson MP, Jubb M, Word M, Wood DR, Hayward M, Martin J, Humphriest SE (2000) The ACE gene and muscle performance. Nature 403:614. doi:10.1038/47534

    Article  PubMed  CAS  Google Scholar 

  • Williams AG, Day SH, Folland JP, Gohlke P, Dhamrait S, Montgomery HE (2005) Circulating angiotensin converting enzyme activity is correlated with muscle strength. Med Sci Sports Exerc 37:944–948

    PubMed  CAS  Google Scholar 

  • Woods DR, Humphries SE, Montgomery HE (2000) The ACE I/D Polymorphism and Human Physical Performance. Trends Endocrinol Metab 11:416–420. doi:10.1016/S1043-2760(00)00310-6

    Article  PubMed  CAS  Google Scholar 

  • Woods D, Hickman M, Jamshidi Y, Brull D, Vassiliou V, Jones A, Humphries S, Montgomery H (2001) Elite swimmers and D allele of the ACE I/D polymorphism. Hum Genet 108(3):230–232. doi:10.1007/s004390100466

    Article  PubMed  CAS  Google Scholar 

  • Woods D, World M, Rayson M, Williams A, Jubb M, Jamshidi Y, Hayward M, Mary D, Humphries S, Montgomery H (2002) Endurance enhancement related to the human angiotensin I-converting enzyme I-D polymorphism is not due to differences in the cardio respiratory response to training. Eur J Appl Physiol 86:240–244. doi:10.1007/s00421-001-0545-5

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Tanaka H, Shono N, Miura S, Kiyonaga A, Shindo M, Saku K (2003) The I allele of the angiotensin-converting enzyme gene is associated with an increased percentage of slow-twitch type I fibers in human skeletal muscle. Clin Genet 63(2):139–144. doi:10.1034/j.1399-0004.2003.00029.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Portuguese Swimming Federation for authorization and technical support. We are also grateful to the Portuguese Science and Technology Foundation (SFRH/BD/40243/2007) for financial support. All subjects sign an informed consent approved by local health sciences research ethics committee. The experiments comply with the current Portuguese laws and carried out according to the Helsinki Declaration.

Conflict of interest statement

All authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo Matos Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, A.M., Silva, A.J., Garrido, N.D. et al. Association between ACE D allele and elite short distance swimming. Eur J Appl Physiol 106, 785–790 (2009). https://doi.org/10.1007/s00421-009-1080-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-009-1080-z

Keywords

Navigation