Skip to main content

Advertisement

Log in

Relationship between ace genotype and short duration aerobic performance development

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

We have previously demonstrated that, ACE D allele may be related with a better performance in short duration aerobic endurance in a homogeneous cohort with similar training backgrounds. We aimed to study the variation in the short-duration aerobic performance development amongst ACE genotypes in response to identical training programs in homogeneous populations. The study group consisted of 186 male Caucasian non-elite Turkish army recruits. All subjects had undergone an identical training program with double training session per day and 6 days a week for 6 months. Performances for middle distance runs (2,400 m) were evaluated on an athletics track before and after the training period. ACE gene polymorphisms were studied by PCR analysis. The distribution of genotypes in the whole group was 16.7% II, n = 31; 46.2% ID, n = 86; 37.1% DD, n = 69. Subjects with ACE DD genotype had significantly higher enhancement than the ID (P < 0.01) and II (P < 0.05) genotype groups. Around 2,400 m performance enhancement ratios showed a linear trend as ACE DD > ACE ID > ACE II (P value for Pearson χ2 = 0.461 and P value for linear by linear association = 0.001). ACE DD genotype seems to have an advantage in development in short-duration aerobic performance. This data in unison with the data that we have obtained from homogenous cohorts previously is considered as an existence of threshold for initiation of ACE I allele effectiveness in endurance performance. This threshold may be anywhere between 10 and 30 min with lasting maximal exercises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez R, Terrados N, Ortalano R, Iglesias-Cubero G, Requero JR, Batalla A, Cortina A (2000) Genetic variation in the renin-angiotensin system and athletic performance. Eur J Appl Physiol 82(1–2):117–120

    Article  PubMed  CAS  Google Scholar 

  • Cam FS, Colakoglu M, Sekuri C, Colakoglu S, Sahan C, Berdeli A (2005) Association between the ACE I/D polymorphism and physical performance in a homogeneous non-elite cohort. Can J Appl Physiol 30(1):74–86

    PubMed  CAS  Google Scholar 

  • Cam S, Colakoglu M, Colakoglu S, Sekuri C, Berdeli A (2006) ACE I/D gene polymorphism and aerobic endurance development in response to training in a non-elite female cohort. Scand J Med Sci Sports (in press)

  • Colakoglu M, Cam FS, Kayitken B, Cetinoz F, Colakoglu S, Turkmen M, Sayin M (2005) ACE genotype may have an effect on single vs multiple set preferences in strength training. Eur J Appl Physiol 95:20–27

    Article  PubMed  CAS  Google Scholar 

  • De Sousa E, Veksler V, Bigard X, Mateo P, Ventura-Clapier R (2000) Heart failure affects mitochondrial but not myofibrillar intrinsic properties of skeletal muscle. Circulation 102:1847–1853

    PubMed  Google Scholar 

  • Folland J, Leach B, Little T, Hawker K, Myerson S, Montgomery H, Jones D (2000) Angiotensin-converting enzyme genotype affects the response of human skeletal muscle to functional overload. Exp Physiol 85:575–579

    Article  PubMed  CAS  Google Scholar 

  • Davis GK, Millner RW, Roberts DH (2000) Angiotensin converting enzyme (ACE) gene expression in the human left ventricle: effect of ACE gene insertion/deletion polymorphism and left ventricular function. Eur J Heart Fail 2:253–256

    Article  PubMed  CAS  Google Scholar 

  • Gayagay G, Yu B, Hambly B, Boston T, Hahn A, Celermajer DS, Trent RJ (1998) Elite endurance athletes and the ACE I allele—the role of genes in athletic performance. Hum Genet 103:48–50

    Article  PubMed  CAS  Google Scholar 

  • Hopkinson NS, Nickol AH, Payne J, Hawe E, Man WD-C, Moxham J, Montgomery H, Polkey MI (2004) Angiotensin converting enzyme genotype and strength in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 170:395–399

    Article  PubMed  Google Scholar 

  • Martin DE (1990) Training and performance of women distance runners: a contemporary perspective. New Stud Athl 5 (2):45–68

    Google Scholar 

  • Mizuiri S, Hemmi H, Kumanomidou H et al (1997). Decreased renal ACE mRNa levels in healthy subjects with II ACE genotype and diabetic nephropathy. J Am Soc Nephrol 8:115A

    Google Scholar 

  • Montgomery HE, Clarkson P, Dollery CM, Prasad K, Losi MA, Hemingway H, Statters D, Jubb M, Girvain M, Varnava A, World M, Deanfield J, Talmud P, McEwan JR, McKenna WJ, Humphries S (1997) Association of angiotensin-converting enzyme gene I/D polymorphism with change in left ventricular mass in response to physical training. Circulation 96(3):741–747

    PubMed  CAS  Google Scholar 

  • Montgomery HE, Marshall R, Hemingway H, Myerson S, Clarkson P (1998) Human gene for physical performance. Nature 393:221–222

    Article  PubMed  CAS  Google Scholar 

  • Myerson S, Hemingway H, Budget R, Martin J, Humphries S, Montgomery (1999) Human angiotensin I-converting enzyme gene and endurance performance. J Appl Physiol 87(4):1313–1316

    PubMed  CAS  Google Scholar 

  • Myerson SG, Montgomery HE, Whittingham M, Jubb M, World MJ, Humphries SE, Pennell DJ (2001) Left ventricular hypertrophy with exercise and ACE gene insertion/deletion polymorphism: a randomized controlled trial with losartan. Circulation 103(2):226–230

    PubMed  CAS  Google Scholar 

  • Nazarov IB, Woods DR, Montgomery HE, Shneirder OV, Kazakov VI, Tomilin NV, Rogozkin VA (2001) The angiotensin converting enzyme I/D polymorphism in Russian athletes. Eur J Hum Genet 9(10):797–801

    Article  PubMed  CAS  Google Scholar 

  • Noakes TD (1988) The implications of exercise testing for prediction of athletic performance: a contemporary perspective. Med Sci Sports Exerc 21(4) 319–330

    Google Scholar 

  • Noakes TD (1991) Lore of running, 3rd edn. Leisure Press/Human Kinetics, Campaign

    Google Scholar 

  • Ohkuwa T, Yoshinobu K, Katsumata K, Nakao T, Miyamura M (1984) Blood lactate and glycerol after 400 m and 3000 m runs in sprint and long distance runners. Eur J Appl Physiol Occup Physiol 53:213–218

    Article  PubMed  CAS  Google Scholar 

  • Rankinen T, Perusse L, Gagnon J, Chagnon YC, Leon AS, Skinner JS, Wilmore JH, Rao DC, Bouchard C (2000a) Angiotensin-converting enzyme ID polymorphism and fitness phenotype in the Heritage family study. J Appl Physiol 88:1029–1035

    CAS  Google Scholar 

  • Rankinen T, Wolfarth B, Simoneau JA, Maier-Lenz D, Rauramaa R, Rivera MA, Boulay MR, Chagnon YC, Perusse L, Keul J, Bouchard C (2000b) No association between angiotensin-converting enzyme ID polymorphism and elite endurance athlete status. J Appl Physiol 88:1571–1575

    CAS  Google Scholar 

  • Rattigan S, Dora KA, Tong AC, Clark MG (1996) Perfused skeletal muscle contraction and metabolism improved by angiotensin II-mediated vasoconstriction. Am J Physiol Endocrinol Metab 271:E96–E103

    CAS  Google Scholar 

  • Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F (1990) An insertion/deletion polymorphism in the angiotensin-1-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 86:1343–1346

    Article  PubMed  CAS  Google Scholar 

  • Rigat B, Hubert C, Corvol P, Soubrier F (1992) PCR detection of the insertion / deletion polymorphism of the human angiotensin converting enzyme gene (DCP1) (dipeptidyl carboxypeptidase 1). Nucleic Acids Res 20:1433

    PubMed  CAS  Google Scholar 

  • Shanmugam V, Sell KW, Saha BK (1993) Mistyping ACE heterozygotes. PCR Methods Appl 3:120–121

    PubMed  CAS  Google Scholar 

  • Taylor RR, Mamotte CD, Fallon K, van Bockxmeer FM (1999) Elite athletes and gene for angiotensin-converting enzyme. J Appl Physiol 87:1035–1037

    PubMed  CAS  Google Scholar 

  • Woods D, Hickman K, Jamshidi Y, Brull D, Vassiliou V, Jones A, Humphries S, Montgomery H (2001) Elite swimmers and the D allele of the ACE I/D polymorphism. Hum Genet 108:230–232

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Tanaka H, Shono N, Miura S, Kiyonaga A, Shindo M, Saku K (2003) The I allele of the angiotensin-converting enzyme gene is associated with an increased percentage of slow-twitch type I fibers in human skeletal muscle. Clin Genet 63(2):139–144

    Article  PubMed  CAS  Google Scholar 

  • Zhao B, Moochhala SM, Tham S, Lu J, Chia M, Byrne C, Hu Q, Lee LKH (2003) Relationship between angiotensin-converting enzyme ID polymorphism and VO2max of Chinese males. Life Sci 73:2625–2630

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muzaffer Colakoglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerit, M., Colakoglu, M., Erdogan, M. et al. Relationship between ace genotype and short duration aerobic performance development. Eur J Appl Physiol 98, 461–465 (2006). https://doi.org/10.1007/s00421-006-0286-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-006-0286-6

Keywords

Navigation