Skip to main content
Log in

The mixed-mode analysis of a functionally graded orthotropic half-plane weakened by multiple curved cracks

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The problem of functionally graded orthotropic half-plane with climb and glide edge dislocations is solved. Dislocations are used as the building blocks of defects to model cracks of modes I and II. Following a dislocation-based approach, the problem is reduced to a system of singular integral equations for dislocation density functions on the surfaces of smooth cracks. These integral equations enforce the crack-face boundary conditions and are solved numerically for the dislocation density. The numerical results include the stress intensity factors for several different cases of crack configurations and arrangements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Erdogan, F.: Stress distribution in a non-homogeneous elastic plane with cracks. J. Appl. Mech. Trans. ASME 30, 232–236 (1963)

    Article  MATH  Google Scholar 

  2. Karihaloo, B.L.: Spread of plasticity from stacked stress concentrations. Int. J. Solids Struct. 13, 221–228 (1977)

    Article  MATH  Google Scholar 

  3. Karihaloo, B.L.: Fracture characteristics of solids containing doubly-periodic arrays of cracks. Proc. R. Soc. Lond. A 360, 373–387 (1978)

    Article  MATH  Google Scholar 

  4. Karihaloo, B.L.: Fracture of solids containing arrays of cracks. Eng. Fract. Mech. 12, 49–77 (1979)

    Article  Google Scholar 

  5. Delale, F., Erdogan, F.: Crack problem for a non-homogenous plane. J. Appl. Mech. 50, 609–614 (1983)

    Article  MATH  Google Scholar 

  6. Delale, F., Erdogan, F.: Interface crack in a nonhomogeneous elastic medium. Int. J. Eng. Sci. 26, 559–568 (1988)

    Article  MATH  Google Scholar 

  7. Erdogan, F., Kaya, A.C., Joseph, P.F.: The crack problem in bonded nonhomogeneous materials. J. Appl. Mech. Trans. ASME 58, 410–418 (1991)

    Article  MATH  Google Scholar 

  8. Ozturk, M., Erdogan, F.: The axisymmetric crack problem in a nonhomogeneous medium. J. Appl. Mech. Trans. ASME 60, 406–413 (1993)

    Article  MATH  Google Scholar 

  9. Konda, N., Erdogan, F.: The mixed mode crack problem in a nonhomogeneous elastic medium. Eng. Fract. Mech. 47, 533–545 (1994)

    Article  Google Scholar 

  10. Mauge, C., Kachanov, M.: Anisotropic material with interacting arbitrarily oriented cracks stress intensity factors and crack-microcrack interactions. Int. J. Fract. 65, 115–139 (1994)

    MATH  Google Scholar 

  11. Erdogan, F.: Fracture mechanics of functionally graded materials. Compos. Eng. 5, 753–770 (1995)

    Article  Google Scholar 

  12. Chen, Y.F., Erdogan, F.: The interface crack problem for a nonhomogeneous coating bonded to homogeneous substrate. J. Mech. Phys. Solids 44, 771–787 (1996)

    Article  Google Scholar 

  13. Jin, Z.H., Batra, R.C.: Some basic fracture mechanics concepts in functionally graded materials. J. Mech. Phys. Solids 44, 1221–1235 (1996)

    Article  Google Scholar 

  14. Gu, P., Asaro, R.J.: Cracks in functionally graded materials. Int. J. Solids Struct. 34, 1–17 (1997)

    Article  MATH  Google Scholar 

  15. Ozturk, M., Erdogan, F.: Mode I crack problem in an inhomogeneous orthotropic medium. Int. J. Eng. Sci. 35, 869–883 (1997)

    Article  MATH  Google Scholar 

  16. Ozturk, M., Erdogan, F.: The mixed mode crack problem in an inhomogeneous orthotropic medium. Int. J. Fract. 98, 243–261 (1999)

    Article  Google Scholar 

  17. Anlas, G., Santare, M.H., Lambros, J.: Numerical calculation of stress intensity factors in functionally graded materials. Int. J. Fract. 104, 131–143 (2000)

    Article  Google Scholar 

  18. Huang, H., Kardomateas, G.A.: Stress intensity factors for a mixed mode center crack in an anisotropic strip. Int. J. Fract. 108, 367–381 (2001)

    Article  Google Scholar 

  19. Dolbow, J.E., Gosz, M.: On the computation of mixed-mode stress intensity factors in functionally graded materials. Int. J. Solids Struct. 39, 2557–2574 (2002)

    Article  MATH  Google Scholar 

  20. Wang, L.B., Mai, Y.W., Sun, Y.G.: Fracture mechanics analysis model for functionally graded materials with arbitrarily distributed properties. Int. J. Fract. 116, 161–177 (2002)

    Article  Google Scholar 

  21. Guo, L.C., Wu, L.Z., Zeng, T., Ma, L.: Mode I crack problem for a functionally graded orthotropic strip. Eur. J. Mech. A Solids 23, 219–234 (2004)

    Article  MATH  Google Scholar 

  22. Long, X., Delale, F.: The mixed mode crack problem in an FGM layer bonded to a homogeneous half-plane. Int. J. Solids Struct. 42, 3897–3917 (2005)

    Article  MATH  Google Scholar 

  23. Ma, L., Wu, L.Z., Guo, L.C., Zhou, Z.G.: Dynamic behavior of a finite crack in the functionally graded materials. Mech. Mater. 37, 1153–1165 (2005)

    Article  Google Scholar 

  24. Menouillard, T., Elguedj, T., Combescure, A.: Mixed mode stress intensity factors for graded materials. Int. J. Solids Struct. 43, 1946–1959 (2006)

    Article  MATH  Google Scholar 

  25. Chang, J.H., Wu, D.J.: Computation of mixed-mode stress intensity factors for curved cracks in anisotropic elastic solids. Eng. Fract. Mech. 74, 1360–1372 (2007)

    Article  MathSciNet  Google Scholar 

  26. Dag, S., Yildirim, B., Sarikaya, D.: Mixed-mode fracture analysis of orthotropic functionally graded materials under mechanical and thermal loads. Int. J. Solids Struct. 44, 7816–7840 (2007)

    Article  MATH  Google Scholar 

  27. Fotuhi, A.R., Fariborz, S.J.: In-plane stress analysis of an orthotropic plane containing multiple defects. Int. J. Solids Struct. 44, 4167–4183 (2007)

    Article  MATH  Google Scholar 

  28. Faal, R.T., Fariborz, S.J.: Stress analysis of orthotropic planes weakened by cracks. Appl. Math. Model. 31, 1133–1148 (2007)

    Article  MATH  Google Scholar 

  29. Fotuhi, A.R., Faal, R.T., Fariborz, S.J.: In-plane analysis of a cracked orthotropic half-plane. Int. J. Solids Struct. 44, 1608–1627 (2007)

    Article  MATH  Google Scholar 

  30. Sladek, J., Sladek, V., Zhang, C.H.: Evaluation of the stress intensity factors for cracks in continuously non-homogeneous solids, Part I: interaction integral. Mech. Adv. Mater. Struct. 15, 438–443 (2008)

    Article  Google Scholar 

  31. Hongmin, X., Xuefeng, Y., Xiqiao, F., Yeh, H.Y.: Dynamic stress intensity factors of a semi-infinite crack in an orthotropic functionally graded material. Mech. Mater. 40, 37–47 (2008)

    Article  Google Scholar 

  32. Ayatollahi, M., Fariborz, S.J.: Elastodynamic analysis of a plane weakened by several cracks. Int. J. Solids Struct. 46, 1743–1754 (2009)

    Article  MATH  Google Scholar 

  33. Mousavi, S.M., Fariborz, S.J.: Anti-plane elastodynamic analysis of cracked graded orthotropic layers with viscous damping. Appl. Math. Model. 36, 1626–1638 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Baghestani, A.M., Fotuhi, A.R., Fariborz, S.J.: Multiple interacting cracks in an orthotropic layer. Arch. Appl. Mech. 83, 1549–1567 (2013)

    Article  MATH  Google Scholar 

  35. Erdogan, F., Gupta, G.D., Cook, T.S.: Numerical solution of integral equations. In: Sih, G.C. Methods of Analysis and Solution of Crack Problems. Noordhoff, Leyden, Holland (1973)

  36. Herakovich, C.T.: Mechanics of Fibrous Composites. Wiley, New York (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ayatollahi.

Appendices

Appendix A

The integrands of Eq. (18) are given as

$$\begin{aligned} H_{xx1} (x,y,\omega )= & {} \frac{\beta C_{660} (\alpha _2 +2\alpha _3 )}{\pi }\frac{1}{(r_1 -r_2 )}\left\{ b_x \left[ \frac{r_4 r_2^2 \mathrm{e}^{r_2 y\beta }}{(r_2 -r_3 )(r_2 -r_4 )}-\frac{r_3 r_2^2 \mathrm{e}^{r_1 y\beta }}{(r_1 -r_3 )(r_1 -r_4 )}\right. \right. \nonumber \\&+\,\frac{r_3^3 (r_2 -r_3 )\mathrm{e}^{(r_1 -r_3 )\beta h+r_3 y\beta }-r_4 r_3^2 (r_1 -r_3 )\mathrm{e}^{(r_2 -r_3 )\beta h+r_3 y\beta }}{(r_1 -r_3 )(r_2 -r_3 )(r_3 -r_4 )}\nonumber \\&\left. +\,\frac{r_3 r_4^2 (r_2 -r_4 )\mathrm{e}^{(r_1 -r_4 )\beta h+r_4 y\beta }-r_4^3 (r_1 -r_4 )\mathrm{e}^{(r_2 -r_4 )\beta h+r_4 y\beta }}{(r_4 -r_3 )(r_2 -r_4 )(r_1 -r_4 )}\right] \cos (\beta \omega x)\nonumber \\&+\,\omega b_y \left[ \frac{r_1^2 \mathrm{e}^{r_1 y\beta }}{(r_1 -r_3 )(r_1 -r_4 )}-\frac{r_2^2 \mathrm{e}^{r_2 y\beta }}{(r_2 -r_3 )(r_2 -r_4 )}\right. \nonumber \\&+\,\frac{r_3^2 (r_1 -r_3 )\mathrm{e}^{(r_2 -r_3 )\beta h+r_3 y\beta }-r_3^2 (r_2 -r_3 )\mathrm{e}^{(r_1 -r_3 )\beta h+r_3 y\beta }}{(r_1 -r_3 )(r_2 -r_3 )(r_3 -r_4 )}\nonumber \\&+\,\left. \left. \frac{r_4^2 (r_1 -r_4 )\mathrm{e}^{(r_2 -r_4 )\beta h+r_4 y\beta }-r_4^2 (r_2 -r_4 )\mathrm{e}^{(r_1 -r_4 )\beta h+r_4 y\beta }}{(r_4 -r_3 )(r_2 -r_4 )(r_1 -r_4 )}\right] \sin (\beta \omega x) \right\} , \end{aligned}$$
(34)
$$\begin{aligned} H_{yy1} (x,y,\omega )= & {} -\frac{\beta C_{660} (\alpha _2 +2\alpha _3 )}{\pi }\frac{\omega ^{2}}{(r_1 -r_2 )}\left\{ b_x \left[ \frac{r_4 \mathrm{e}^{r_2 y\beta }}{(r_2 -r_3 )(r_2 -r_4 )}-\frac{r_3 \mathrm{e}^{r_1 y\beta }}{(r_1 -r_3 )(r_1 -r_4 )}\right. \right. \nonumber \\&+\,\frac{r_3 (r_2 -r_3 )\mathrm{e}^{(r_1 -r_3 )\beta h+r_3 y\beta }-r_4 (r_1 -r_3 )\mathrm{e}^{(r_2 -r_3 )\beta h+r_3 y\beta }}{(r_1 -r_3 )(r_2 -r_3 )(r_3 -r_4 )} \nonumber \\&\left. +\,\frac{r_3 (r_2 -r_4 )\mathrm{e}^{(r_1 -r_4 )\beta h+r_4 y\beta }-r_4 (r_1 -r_4 )\mathrm{e}^{(r_2 -r_4 )\beta h+r_4 y\beta }}{(r_4 -r_3 )(r_2 -r_4 )(r_1 -r_4 )}\right] \cos (\beta \omega x) \nonumber \\&+\,\omega b_y \left[ \frac{\mathrm{e}^{r_1 y\beta }}{(r_1 -r_3 )(r_1 -r_4 )}-\frac{\mathrm{e}^{r_2 y\beta }}{(r_2 -r_3 )(r_2 -r_4 )}\right. \nonumber \\&+\,\frac{(r_1 -r_3 )\mathrm{e}^{(r_2 -r_3 )\beta h+r_3 y\beta }-(r_2 -r_3 )\mathrm{e}^{(r_1 -r_3 )\beta h+r_3 y\beta }}{(r_1 -r_3 )(r_2 -r_3 )(r_3 -r_4 )}\nonumber \\&+\,\left. \left. \frac{(r_1 -r_4 )\mathrm{e}^{(r_2 -r_4 )\beta h+r_4 y\beta }-(r_2 -r_4 )\mathrm{e}^{(r_1 -r_4 )\beta h+r_4 y\beta }}{(r_4 -r_3 )(r_2 -r_4 )(r_1 -r_4 )}\right] \sin (\beta \omega x) \right\} , \end{aligned}$$
(35)
$$\begin{aligned} H_{xy1} (x,y,\omega )= & {} \frac{\beta C_{660} (\alpha _2 +2\alpha _3 )}{\pi }\frac{\omega }{(r_1 -r_2 )}\left\{ b_x \left[ \frac{r_2 r_4 \mathrm{e}^{r_2 y\beta }}{(r_2 -r_3 )(r_2 -r_4 )}-\frac{r_1 r_3 \mathrm{e}^{r_1 y\beta }}{(r_1 -r_3 )(r_1 -r_4 )}\right. \right. \nonumber \\&+\,\frac{r_3^2 (r_2 -r_3 )\mathrm{e}^{(r_1 -r_3 )\beta h+r_3 y\beta }-r_3 r_4 (r_1 -r_3 )\mathrm{e}^{(r_2 -r_3 )\beta h+r_3 y\beta }}{(r_1 -r_3 )(r_2 -r_3 )(r_3 -r_4 )}\nonumber \\&\left. +\,\frac{r_3 r_4 (r_2 -r_4 )\mathrm{e}^{(r_1 -r_4 )\beta h+r_4 y\beta }-r_4^2 (r_1 -r_4 )\mathrm{e}^{(r_2 -r_4 )\beta h+r_4 y\beta }}{(r_4 -r_3 )(r_2 -r_4 )(r_1 -r_4 )}\right] \sin (\beta \omega x)\nonumber \\&-\,\omega b_y \left[ \frac{r_1 \mathrm{e}^{r_1 y\beta }}{(r_1 -r_3 )(r_1 -r_4 )}-\frac{r_2 \mathrm{e}^{r_2 y\beta }}{(r_2 -r_3 )(r_2 -r_4 )}\right. \nonumber \\&+\,\frac{r_3 (r_1 -r_3 )\mathrm{e}^{(r_2 -r_3 )\beta h+r_3 y\beta }-r_3 (r_2 -r_3 )\mathrm{e}^{(r_1 -r_3 )\beta h+r_3 y\beta }}{(r_1 -r_3 )(r_2 -r_3 )(r_3 -r_4 )}\nonumber \\&+\,\left. \left. \frac{r_4 (r_1 -r_4 )\mathrm{e}^{(r_2 -r_4 )\beta h+r_4 y\beta }-r_4 (r_2 -r_4 )\mathrm{e}^{(r_1 -r_4 )\beta h+r_4 y\beta }}{(r_4 -r_3 )(r_2 -r_4 )(r_1 -r_4 )}\right] \cos (\beta \omega x) \right\} , \end{aligned}$$
(36)
$$\begin{aligned} H_{xx2} (x,y,\omega )= & {} \frac{\beta C_{660} (\alpha _2 +2\alpha _3 )}{\pi }\frac{1}{(r_1 -r_2 )(r_4 -r_3 )}\left\{ b_x \left[ \frac{r_3^3 (r_2 -r_3 )(1-\mathrm{e}^{(r_1 -r_3 )\beta h})-r_4 r_3^2 (r_1 -r_3 )(1-\mathrm{e}^{(r_2 -r_3 )\beta h})}{(r_2 -r_3 )(r_1 -r_3 )}\mathrm{e}^{r_3 y\beta } \right. \right. \nonumber \\&\left. +\,\frac{r_4^3 (r_1 -r_4 )(1-\mathrm{e}^{(r_2 -r_4 )\beta h})-r_3 r_4^2 (r_2 -r_4 )(1-\mathrm{e}^{(r_1 -r_4 )\beta h})}{(r_2 -r_4 )(r_1 -r_4 )}\mathrm{e}^{r_4 y\beta }\right] \cos (\beta \omega x)\nonumber \\&+\,\omega b_y \left[ \frac{r_3^2 (r_1 -r_3 )(1-\mathrm{e}^{(r_2 -r_3 )\beta h})-r_3^2 (r_2 -r_3 )(1-\mathrm{e}^{(r_1 -r_3 )\beta h})}{(r_2 -r_3 )(r_1 -r_3 )}\mathrm{e}^{r_3 y\beta }\right. \nonumber \\&\left. +\,\left. \frac{r_4^2 (r_2 -r_4 )(1-\mathrm{e}^{(r_1 -r_4 )\beta h})-r_4^2 (r_1 -r_4 )(1-\mathrm{e}^{(r_2 -r_4 )\beta h})}{(r_2 -r_4 )(r_1 -r_4 )}\mathrm{e}^{r_4 y\beta }\right] \sin (\beta \omega x) \right\} , \end{aligned}$$
(37)
$$\begin{aligned} H_{yy2} (x,y,\omega )= & {} -\frac{\beta C_{660} (\alpha _2 +2\alpha _3 )}{\pi }\frac{\omega ^{2}}{(r_1 -r_2 )(r_4 -r_3 )}\left\{ b_x \left[ \frac{r_3 (r_2 -r_3 )(1-\mathrm{e}^{(r_1 -r_3 )\beta h})-r_4 (r_1 -r_3 )(1-\mathrm{e}^{(r_2 -r_3 )\beta h})}{(r_2 -r_3 )(r_1 -r_3 )}\mathrm{e}^{r_3 y\beta } \right. \right. \nonumber \\&\left. +\,\frac{r_4 (r_1 -r_4 )(1-\mathrm{e}^{(r_2 -r_4 )\beta h})-r_3 (r_2 -r_4 )(1-\mathrm{e}^{(r_1 -r_4 )\beta h})}{(r_2 -r_4 )(r_1 -r_4 )}\mathrm{e}^{r_4 y\beta }\right] \cos (\beta \omega x)\nonumber \\&+\,\omega b_y \left[ \frac{(r_1 -r_3 )(1-\mathrm{e}^{(r_2 -r_3 )\beta h})-(r_2 -r_3 )(1-\mathrm{e}^{(r_1 -r_3 )\beta h})}{(r_2 -r_3 )(r_1 -r_3 )}\mathrm{e}^{r_3 y\beta }\right. \nonumber \\&+\,\left. \left. \frac{(r_2 -r_4 )(1-\mathrm{e}^{(r_1 -r_4 )\beta h})-(r_1 -r_4 )(1-\mathrm{e}^{(r_2 -r_4 )\beta h})}{(r_2 -r_4 )(r_1 -r_4 )}\mathrm{e}^{r_4 y\beta } \right] \sin (\beta \omega x) \right\} , \end{aligned}$$
(38)
$$\begin{aligned} H_{xy2} (x,y,\omega )= & {} \frac{\beta C_{660} (\alpha _2 +2\alpha _3 )}{\pi }\frac{\omega }{(r_1 -r_2 )(r_4 -r_3 )}\left\{ b_x \left[ \frac{r_3^2 (r_2 -r_3 )(1-\mathrm{e}^{(r_1 -r_3 )\beta h})-r_3 r_4 (r_1 -r_3 )(1-\mathrm{e}^{(r_2 -r_3 )\beta h})}{(r_2 -r_3 )(r_1 -r_3 )}\mathrm{e}^{r_3 y\beta } \right. \right. \nonumber \\&\left. +\,\frac{r_4^2 (r_1 -r_4 )(1-\mathrm{e}^{(r_2 -r_4 )\beta h})-r_3 r_4 (r_2 -r_4 )(1-\mathrm{e}^{(r_1 -r_4 )\beta h})}{(r_2 -r_4 )(r_1 -r_4 )}\mathrm{e}^{r_4 y\beta }\right] \sin (\beta \omega x)\nonumber \\&-\,\omega b_y \left[ \frac{r_3 (r_1 -r_3 )(1-\mathrm{e}^{(r_2 -r_3 )\beta h})-r_3 (r_2 -r_3 )(1-\mathrm{e}^{(r_1 -r_3 )\beta h})}{(r_2 -r_3 )(r_1 -r_3 )}\mathrm{e}^{r_3 y\beta }\right. \nonumber \\&+\,\left. \left. \frac{r_4 (r_2 -r_4 )(1-\mathrm{e}^{(r_1 -r_4 )\beta h})-r_4 (r_1 -r_4 )(1-\mathrm{e}^{(r_2 -r_4 )\beta h})}{(r_2 -r_4 )(r_1 -r_4 )}\mathrm{e}^{r_4 y\beta }\right] \cos (\beta \omega x) \right\} . \end{aligned}$$
(39)

Appendix B

$$\begin{aligned} H_{xx1\infty } (x,y,\omega )= & {} \frac{\beta C_{660} (\alpha _2 +2\alpha _3 )\mathrm{e}^{\frac{y\beta }{2}}}{2\pi (r_{11} -r_{22} )(r_{11} +r_{22} )}\left[ {\left( {r_{11}^2 \mathrm{e}^{-r_{11} y\beta \omega }-r_{22}^2 \mathrm{e}^{-r_{22} y\beta \omega }} \right) \cos (\beta x\omega )b_x } \right. \nonumber \\&-\left. {\left( {r_{11} \mathrm{e}^{-r_{11} y\beta \omega }-r_{22} \mathrm{e}^{-r_{22} y\beta \omega }} \right) \sin (\beta x\omega )b_y } \right] , \end{aligned}$$
(40)
$$\begin{aligned} H_{yy1\infty } (x,y,\omega )= & {} -\frac{\beta C_{660} (\alpha _2 +2\alpha _3 )\mathrm{e}^{\frac{y\beta }{2}}}{2\pi (r_{11} -r_{22} )(r_{11} +r_{22} )}\left[ {\left( {\mathrm{e}^{-r_{11} y\beta \omega }-\mathrm{e}^{-r_{22} y\beta \omega }} \right) \cos (\beta x\omega )b_x } \right. \nonumber \\&-\left. {\left( {\frac{\mathrm{e}^{-r_{11} y\beta \omega }}{r_{11} }-\frac{\mathrm{e}^{-r_{22} y\beta \omega }}{r_{22} }} \right) \sin (\beta x\omega )b_y } \right] , \end{aligned}$$
(41)
$$\begin{aligned} H_{xy1\infty } (x,y,\omega )= & {} -\frac{\beta C_{660} (\alpha _2 +2\alpha _3 )\mathrm{e}^{\frac{y\beta }{2}}}{2\pi (r_{11} -r_{22} )(r_{11} +r_{22} )}\left[ {\left( {r_{11} \mathrm{e}^{-r_{11} y\beta \omega }-r_{22} \mathrm{e}^{-r_{22} y\beta \omega }} \right) \sin (\beta x\omega )b_x } \right. \nonumber \\&+\left. {\left( {\mathrm{e}^{-r_{11} y\beta \omega }-\mathrm{e}^{-r_{22} y\beta \omega }} \right) \cos (\beta x\omega )b_y } \right] , \end{aligned}$$
(42)
$$\begin{aligned} H_{xx2\infty } (x,y,\omega )= & {} -\frac{\beta C_{660} (\alpha _2 +2\alpha _3 )\mathrm{e}^{\frac{y\beta }{2}}}{2\pi (r_{11} -r_{22} )(r_{11} +r_{22} )}\left[ {\left( {r_{11}^2 \mathrm{e}^{r_{11} y\beta \omega }-r_{22}^2 \mathrm{e}^{r_{22} y\beta \omega }} \right) \cos (\beta x\omega )b_x } \right. \nonumber \\&+\left. {\left( {r_{11} \mathrm{e}^{r_{11} y\beta \omega }-r_{22} \mathrm{e}^{r_{22} y\beta \omega }} \right) \sin (\beta x\omega )b_y } \right] , \end{aligned}$$
(43)
$$\begin{aligned} H_{yy2\infty } (x,y,\omega )= & {} \frac{\beta C_{660} (\alpha _2 +2\alpha _3 )\mathrm{e}^{\frac{y\beta }{2}}}{2\pi (r_{11} -r_{22} )(r_{11} +r_{22} )}\left[ {\left( {\mathrm{e}^{r_{11} y\beta \omega }-\mathrm{e}^{r_{22} y\beta \omega }} \right) \cos (\beta x\omega )b_x } \right. \nonumber \\&+\left. {\left( {\frac{\mathrm{e}^{r_{11} y\beta \omega }}{r_{11} }-\frac{\mathrm{e}^{r_{22} y\beta \omega }}{r_{22} }} \right) \sin (\beta x\omega )b_y } \right] , \end{aligned}$$
(44)
$$\begin{aligned} H_{xy2\infty } (x,y,\omega )= & {} -\frac{\beta C_{660} (\alpha _2 +2\alpha _3 )\mathrm{e}^{\frac{y\beta }{2}}}{2\pi (r_{11} -r_{22} )(r_{11} +r_{22} )}\left[ {\left( {r_{11} \mathrm{e}^{r_{11} y\beta \omega }-r_{22} \mathrm{e}^{r_{22} y\beta \omega }} \right) \sin (\beta x\omega )b_x } \right. \nonumber \\&-\left. {\left( {\mathrm{e}^{r_{11} y\beta \omega }-\mathrm{e}^{r_{22} y\beta \omega }} \right) \cos (\beta x\omega )b_y } \right] . \end{aligned}$$
(45)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monfared, M.M., Ayatollahi, M. & Mousavi, S.M. The mixed-mode analysis of a functionally graded orthotropic half-plane weakened by multiple curved cracks. Arch Appl Mech 86, 713–728 (2016). https://doi.org/10.1007/s00419-015-1057-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-1057-9

Keywords

Navigation