Skip to main content
Log in

Stabilized implicit co-simulation methods: solver coupling based on constitutive laws

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The numerical stability of implicit (semi-implicit) predictor/corrector co-simulation methods, where the subsystem solvers are coupled by applied forces/torques (i.e., by constitutive equations), has recently been examined by Schweizer and Lu (Arch Appl Mech, 2014. doi:10.1007/s00419-014-0883-5) and Schweizer et al. (J Comput Nonlinear Dyn, 2014. doi:10.1115/1.4028503). Here, we present implicit (semi-implicit) co-simulation methods with improved stability properties. Enhanced stability behavior can be achieved by extending the coupling conditions, i.e., by taking into account derivatives and integrals of the constitutive equations. The stability of the presented co-simulation methods is analyzed by means of a co-simulation test model, which represents two coupled Dahlquist equations. By discretizing the test model with a co-simulation approach, a linear recurrence equation system is obtained, the stability of which defines the numerical stability of the underlying co-simulation method. Results are presented for the three possible decomposition approaches, namely for force/force, force/displacement and displacement/displacement decomposition. Here, co-simulation methods are derived for coupling two mechanical systems. The presented methods may, however, also be applied to couple arbitrary non-mechanical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Alioli, M., Morandini, M., Masarati, P.: Coupled multibody-fluid dynamics simulation of flapping wings. In: Proceedings of the ASME IDETC/CIE 2013, Portland, Oregon, USA, DETC2013-12198, 4–7 August 2013

  2. Ambrosio, J., Pombo, J., Rauter, F., Pereira, M.: A memory based communication in the co-simulation of multibody and finite element codes for pantograph–catenary interaction simulation. In: Bottasso, C.L. (ed.) Multibody Dynamics: Computational Methods and Applications, pp. 231–252. Springer, Berlin (2009)

    Google Scholar 

  3. Ambrosio, J., Pombo, J., Pereira, M., Antunes, P., Mosca, A.: A computational procedure for the dynamic analysis of the catenary–pantograph interaction in high-speed trains. J. Theor. Appl. Mech. 50(3), 681–699 (2012)

    Google Scholar 

  4. Anderson, K.S.: An order-n formulation for the motion simulation of general multi-rigid-body tree systems. Comput. Struct. 46(3), 547–559 (1993)

    Article  MATH  Google Scholar 

  5. Anderson, K., Duan, S.: A hybrid parallelizable low-order algorithm for dynamics of multi-rigid-body systems: part I, chain systems. Math. Comput. Model. 30(9–10), 193–215 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Arnold, M.: Stability of sequential modular time integration methods for coupled multibody system models. J. Comput. Nonlinear Dyn. 5, 1–9 (2010)

    Article  Google Scholar 

  7. Busch, M., Schweizer, B.: Numerical stability and accuracy of different co-simulation techniques: analytical investigations based on a 2-DOF test model. In: Proceedings of the 1st Joint International Conference on Multibody System Dynamics, IMSD 2010, Lappeenranta, Finland, 25–27 May 2010

  8. Busch, M., Schweizer, B.: Coupled simulation of multibody and finite element systems: an efficient and robust semi-implicit coupling approach. Arch. Appl. Mech. 82(6), 723–741 (2012)

    Article  MATH  Google Scholar 

  9. Busch, M., Schweizer, B.: An explicit approach for controlling the macro-step size of co-simulation methods. In: Proceedings of the 7th European Nonlinear Dynamics, ENOC 2011, Rome, Italy, 24–29 July 2011

  10. Carstens, V., Kemme, R., Schmitt, S.: Coupled simulation of flow–structure interaction in turbomachinery. Aerosp. Sci. Technol. 7, 298–306 (2003)

    Article  MATH  Google Scholar 

  11. Cuadrado, J., Cardenal, J., Morer, P., Bayo, E.: Intelligent simulation of multibody dynamics: space-state and descriptor methods in sequential and parallel computing environments. Multibody Syst. Dyn. 4, 55–73 (2000)

    Article  MATH  Google Scholar 

  12. Datar, M., Stanciulescu, I., Negrut, D.: A co-simulation framework for full vehicle analysis. In: Proceedings of the SAE 2011 World Congress, SAE Technical Paper 2011–01-0516, 12–14 April, Detroit, Michigan, USA (2011)

  13. Datar, M., Stanciulescu, I., Negrut, D.: A co-simulation environment for high-fidelity virtual prototyping of vehicle systems. Int. J. Veh. Syst. Model. Test. 7, 54–72 (2012)

    Article  Google Scholar 

  14. Dörfel, M.R., Simeon, B.: Analysis and acceleration of a fluid–structure interaction coupling scheme. In: Numerical Mathematics and Advanced Applications, pp. 307–315 (2010)

  15. Eberhard, P., Gaugele, T., Heisel, U., Storchak, M.: A discrete element material model used in a co-simulated charpy impact test and for heat transfer. In: Proceedings 1st International Conference on Process Machine Interactions, Hannover, Germany, 3–4 September 2008

  16. Friedrich M., Ulbrich, H.: A parallel co-simulation for mechatronic systems. In: Proceedings of The 1st Joint International Conference on Multibody System Dynamics, IMSD 2010, Lappeenranta, Finland, 25–27 May 2010

  17. Gear, C.W., Wells, D.R.: Multirate linear multistep methods. BIT 24, 484–502 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gonzalez, F., Gonzalez, M., Cuadrado, J.: Weak coupling of multibody dynamics and block diagram simulation tools. In: Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, IDETC/CIE 2009, San Diego, California, USA, August 30–September 2, 2009

  19. Gu, B., Asada, H.H.: Co-simulation of algebraically coupled dynamic subsystems without disclosure of proprietary subsystem models. J. Dyn. Syst. Meas. Control 126, 1–13 (2004). doi:10.1115/1.1648307

    Article  Google Scholar 

  20. Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, 3rd edn. Springer, Berlin (2009)

    Google Scholar 

  21. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd edn. Springer, Berlin (2010)

    Google Scholar 

  22. Hippmann, G., Arnold, M., Schittenhelm, M.: Efficient simulation of bush and roller chain drives. In: Goicolea, J., Cuadrado, J., Orden, J.G. (eds.) Proceedings of ECCOMAS Thematic Conference on Advances in Computational Multibody Dynamics, Madrid, pp. 1–18 (2005)

  23. Kübler, R., Schiehlen, W.: Two methods of simulator coupling. Math. Comput. Model. Dyn. Syst. 6, 93–113 (2000)

    Article  MATH  Google Scholar 

  24. Lacoursiere, C., Nordfeldth, F., Linde, M.: A partitioning method for parallelization of large systems in realtime. In: Proceedings of the 3rd Joint International Conference on Multibody System Dynamics and the 7th Asian Conference on Multibody Dynamics, IMSD 2014, ACMD 2014, Bexco, Busan, Korea, June 30–July 3, 2014

  25. Laflin, J.J., Anderson, K.S., Khan, I.M., Poursina, M.: Advances in the application of the divide-and-conquer algorithm to multibody system dynamics. J. Comput. Nonlinear Dyn. (2014). doi:10.1115/1.4026072

  26. Lehnart, A., Fleissner, F., Eberhard, P.: Using SPH in a co-simulation approach to simulate sloshing in tank vehicles. In: Proceedings SPHERIC4, Nantes, France, 27–29 May 2009

  27. Liao, Y.G., Du, H.I.: Co-simulation of multi-body-based vehicle dynamics and an electric power steering control system. Proc. Inst. Mech. Eng. K J. Multibody Dyn. 215, 141–151 (2001)

    Article  Google Scholar 

  28. Malczyk, P., Fraczek, J.: Evaluation of parallel efficiency in modeling of mechanisms using commercial multibody solvers. Arch. Mech. Eng. LVI(3), 237–249 (2009)

    Google Scholar 

  29. Meynen, S., Mayer, J., Schäfer, M.: Coupling algorithms for the numerical simulation of fluid–structure-interaction problems. In: ECCOMAS 2000: European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona (2000)

  30. Naya, M., Cuadrado, J., Dopico, D., Lugris, U.: An efficient unified method for the combined simulation of multibody and hydraulic dynamics: comparison with simplified and co-integration approaches. Arch. Mech. Eng. LVIII, 223–243 (2011)

    Article  Google Scholar 

  31. Negrut, N., Melanz, D., Mazhar, H., Lamb, D., Jayakumar, P.: Investigating through simulation the mobility of light tracked vehicles operating on discrete granular terrain. SAE Int. J. Passeng. Cars Mech. Syst. 6, 369–381 (2013). doi:10.4271/2013-01-1191

    Article  Google Scholar 

  32. Schäfer, M., Yigit, S., Heck, M.: Implicit partitioned fluid–structure interaction coupling. In: ASME, PVP2006-ICPVT11-93184, Vancouver, Canada (2006)

  33. Schmoll, R., Schweizer, B.: Co-simulation of multibody and hydraulic systems: comparison of different coupling approaches. In: Samin, J.C., Fisette, P. (eds.) Multibody Dynamics 2011, ECCOMAS Thematic Conference, Brussels, Belgium, 4–7 July 2011, pp. 1–13

  34. Schweizer, B., Lu, D.: Predictor/corrector co-simulation approaches for solver coupling with algebraic constraints. ZAMM J. Appl. Math. Mech. (2014). doi:10.1002/zamm.201300191

  35. Schweizer, B., Lu, D.: Semi-implicit co-simulation approach for solver coupling. Arch. Appl. Mech. (2014). doi:10.1007/s00419-014-0883-5

  36. Schweizer, B., Lu, D.: Co-simulation methods for solver coupling with algebraic constraints: semi-implicit coupling techniques. In: Proceedings of the 3rd Joint International Conference on Multibody System Dynamics and the 7th Asian Conference on Multibody Dynamics, IMSD 2014, ACMD 2014, Bexco, Busan, Korea, June 30–July 3, 2014

  37. Schweizer, B., Lu, D.: Stabilized index-2 co-simulation approach for solver coupling with algebraic constraints. Multibody Syst. Dyn. (2014). doi:10.1007/s11044-014-9422-y

  38. Schweizer, B., Li, P., Lu, D.: Explicit and implicit co-simulation methods: stability and convergence analysis for different solver coupling approaches. J. Comput. Nonlinear Dyn. (2014). doi:10.1115/1.4028503

  39. Schweizer, B., Li, P., Lu, D., Meyer, T.: Stabilized implicit co-simulation method: solver coupling with algebraic constraints for multibody systems. J. Comput. Nonlinear Dyn. (2015). doi:10.1115/1.4030508

  40. Solcia, T., Masarati, P.: Efficient multirate simulation of complex multibody systems based on free software. In: Proceedings of the ASME IDETC/CIE 2011, Washington, DC, USA, DETC2011-47306, 28–31 August 2011

  41. Spreng, F., Eberhard, P., Fleissner, F.: An approach for the coupled simulation of machining processes using multibody system and smoothed particle hydrodynamics algorithms. Theor. Appl. Mech. Lett. 3(1), 8–013005 (2013)

    Article  Google Scholar 

  42. Verhoeven, A., Tasic, B., Beelen, T.G.J., ter Maten, E.J.W., Mattheij, R.M.M.: BDF compound-fast multirate transient analysis with adaptive stepsize control. J. Numer. Anal. Ind. Appl. Math. 3(3–4), 275–297 (2008)

    MATH  Google Scholar 

  43. Zierath, J., Woernle, C.: Development of a Dirichlet-to-Neumann Algorithm for contact analysis in boundary element systems and its application to MBS-BEM co-simulation. In: Samin, J.C., Fisette, P. (eds.) Multibody Dynamics 2011, ECCOMAS Thematic Conference, Brussels, Belgium, 4–7 July 2011

  44. Zierath, J., Woernle, C.: Contact modelling in multibody systems by means of a boundary element co-simulation and a Dirichlet-to-Neumann Algorithm. In: Oñate, E. (Series ed.) Computational Methods in Applied Sciences. Springer, Berlin (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Schweizer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schweizer, B., Li, P., Lu, D. et al. Stabilized implicit co-simulation methods: solver coupling based on constitutive laws. Arch Appl Mech 85, 1559–1594 (2015). https://doi.org/10.1007/s00419-015-0999-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-0999-2

Keywords

Navigation