Skip to main content
Log in

A combined phase field approach for martensitic transformations and damage

  • Special
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A combined continuum phase field model for martensitic transformations and fracture is introduced. The positive volume change that accompanies the phase transformation from austenite to martensite leads to an eigenstrain within the martensitic phase, which is considered within the present approach. Since the eigenstrain leads to both tensile and compressive loads, the model accounts for the sign of the local volume change. With aid of this model, the interactions between microcrack propagation and the formation of the martensitic phase are studied in two dimensions. Martensite forms in agreement with experimental observations at the crack tip and thus influences the crack formation. The numerical implementation is performed with finite elements. For the transient terms, an implicit time integration scheme is employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khan Z., Ahmed M.: Stress-induced martensitic transformation in metastable austenitic stainless steels: effect on fatigue crack growth rate. J. Mater. Eng. Perform. 5(2), 201–208 (1996)

    Article  Google Scholar 

  2. Stolarz J., Baffie N., Magnin T.: Fatigue short crack behaviour in metastable austenitic stainless steels with different grain sizes. Mater. Sci. Eng. A 319–321, 521–526 (2001)

    Article  Google Scholar 

  3. Nebel T., Eifler D.: Cyclic deformation behaviour of austenitic steels at ambient and elevated temperatures. Sadhana 28, 187–208 (2003)

    Article  Google Scholar 

  4. Roth, I., Krupp, U., Kübbeler, J.C.H.M., Fritzen, C.P.: Deformation induced martensite formation in metastable austenitic steel during in situ fatigue loading in a scanning electron microscope. ESOMAT 06030 (2009). doi:10.1051/esomat/200906030

  5. Skorupski R., Smaga M., Eifler D., Schmitt R., Müller R.: Influence of morphology of deformation induced \({\alpha}\)-martensite on stress-strain response in a two phase austeniticmartensitic-steel. Key Eng. Mater. 592–593, 582–585 (2014)

    Google Scholar 

  6. Francfort G., Marigo J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids. J. Mech. Phys. Solids 46, 131942 (1998)

    Article  MathSciNet  Google Scholar 

  7. Bourdin, B.: Numerical implementation of the variational formulation for quasi-static brittle fracture. Interfaces Free Bound. 9, 411430 (2007). doi:10.4171/IFB/171

  8. Bourdin B., Francfort G., Marigo J.J.: The variational approach to fracture. J. Elast. 91, 5–148 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kuhn C., Müller R.: A continuum phase field model for fracture. Eng. Fract. Mech. 77, 3625–3634 (2010)

    Article  Google Scholar 

  10. Chen L.Q., Wang Y., Khachaturyan A.G.: Kintetics of tweed and twin formation during an ordering transition in a substitutional solid solution. Philos. Mag. Lett. 65, 15–23 (1992)

    Article  Google Scholar 

  11. Wang Y., Khachaturyan A.G.: Three-dimensional field model and computer modeling of martensitic transformations. Acta Mater. 2, 759–773 (1997)

    Article  Google Scholar 

  12. Artemev A., Wang Y., Khachaturyan A.G.: Three-dimensional phase field model and simulation of martensitic transformation in multilayer systems under applied stresses. Acta Mater. 48, 2503–2518 (2000)

    Article  Google Scholar 

  13. Jin Y.M., Artemev A., Khachaturyan A.G.: Three-dimensional phase field model of low-symmetry martensitic transformation in polycrystal: simulation of \({{\zeta_{2}^{'}}}\)-martensite in aucd alloys. Acta Mater. 49, 2309–2320 (2001)

    Article  Google Scholar 

  14. Levitas V.I., Lee D.W., Preston D.L.: Interface propagation and microstructure evolution in phase field models of stress-induced martensitic phase transformations. Int. J. Plast. 26, 395–422 (2009)

    Article  Google Scholar 

  15. Yamanaka A., Takaki T., Tomita Y.: Elastoplastic phase-field simulation of self- and plastic accommodations in cubic \({\rightarrow}\) tetragonal martensitic transformation. Mater. Sci. Eng. A 491, 378–384 (2008)

    Article  Google Scholar 

  16. Kundin A., Raabe D., Emmerich H.: A phase-field model for incoherent martensitic transformations including plastic accomodation process in the austenite. J. Mech. Phys. Solids 59, 2082–2102 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hildebrand F., Miehe C.: Variational phase field modeling of laminate deformation microstructure in finite gradient crystal plasticity. Proc. Appl. Math. Mech. 12, 37–40 (2012)

    Article  Google Scholar 

  18. Gao, L.T., Feng, X.Q., Gao, H.: A phase field method for simulating morphological evolution of vesicles in electric fields. J. Comput. Phys. 228, 41624181 (2009)

  19. Suiker, A.J.S., Turteltaub, S.: Crystalline damage development during martensitic transformations. In: ECOMAS CFD (2006)

  20. Garion C., Skoczen B.: Combined model of strain-induced phase transformation and orthotropic damage in ductile materials at cryogenic temperatures. Int. J. Damage Mech. 12, 331–356 (2003)

    Article  Google Scholar 

  21. Xu B.X., Schrade D., Gross D., Mueller R.: Fracture simulation of ferroelectrics based on the phase field continuum and a damage variable. Int. J. Fract. 166, 163–172 (2010)

    Article  Google Scholar 

  22. Schmitt R., Müller R., Kuhn C., Urbassek H.M.: A phase field approach for multivariant martensitic transformations of stable and metastable phases. Arch. Appl. Mech. 83, 849–859 (2013)

    Article  MATH  Google Scholar 

  23. Schmitt R., Wang B., Urbassek H.M., Müller R.: Modeling of martensitic transformations in pure iron by a phase field approach using information from atomistic simulation. Technische Mechanik 33, 119–130 (2013)

    Google Scholar 

  24. Amor H., Marigo J.J., Maurini C.: Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J. Mech. Phys. Solids 57, 1209–1229 (2009)

    Article  MATH  Google Scholar 

  25. Kuhn C., Müller R.: Phase field simulation of thermomechanical fracture. Proc. Appl. Math. Mech. 9, 191–192 (2009)

    Article  Google Scholar 

  26. Kuhn C., Schlüter A., Müller R.: A phase field approach for dynamic fracture. Proc. Appl. Math. Mech. 13, 87–88 (2013)

    Article  Google Scholar 

  27. Hofacker M., Miehe C.: Continuum phase field modeling of dynamic fracture: variational principles and staggered fe implementation. Int. J. Fract. 178, 113–129 (2012)

    Article  Google Scholar 

  28. Schrade D., Xu B.X., Müller R., Gross D.: On phase field modeling of ferroelectrics: parameter identification and verification. SMASIS 1, 299–306 (2008)

    Google Scholar 

  29. Schrade D., Mueller R., Xu B., Gross D.: Domain evolution in ferroelectric materials: a continuum phase field model and finite element implementation. Comput. Methods Appl. Mech. Eng. 196, 4365–4374 (2007)

    Article  MATH  Google Scholar 

  30. Du Q., Liu C., Wang X.: A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys. 198, 450468 (2004)

    Article  MathSciNet  Google Scholar 

  31. Wechsler, M.S., Lieberman, D.S., Read, T.A.: On the theory of the formation of martensite. J. Metals. Nov. 1503–1515 (1953)

  32. Schmitt R., Kuhn C., Müller R., Bhattacharya K.: Crystal plasticity and martensitic transformations—a phase field approach. Technische Mechanik 34, 23–28 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina Schmitt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmitt, R., Kuhn, C., Skorupski, R. et al. A combined phase field approach for martensitic transformations and damage. Arch Appl Mech 85, 1459–1468 (2015). https://doi.org/10.1007/s00419-014-0945-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-014-0945-8

Keywords

Navigation