Skip to main content
Log in

Stress-induced martensitic transformation in metastable austenitic stainless steels: Effect on fatigue crack growth rate

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This paper addresses the influence of cyclic stress-induced martensitic transformation on fatigue crack growth rates in metastable austenitic stainless steels. At low applied stress and mean stress values in AISI type 301 stainless steel, fatigue crack growth rate is substantially retarded due to a cyclic stress-induced γ-α′ and γ-ε martensitic transformation occurring at the crack-tip plastic zone. It is suggested that the transformation products produce a compressive residual stress at the tip of the fatigue crack, which essentially lowers the effective stress intensity and hence retards the fatigue crack growth rate. At high applied stress or mean stress values, fatigue crack growth rates in AISI type 301 steels become almost equal to those of stable AISI type 302 alloy. As the amount of transformed products increases (with an increase in applied or mean stress), the strain-hardening effect brought about by the transformed martensite phase appears to accelerate fatigue crack growth, offsetting the contribution from the compressive residual stress produced by the positive volume change of γ → α′ or ε transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Angel,J. Iron Steel Inst., Vol 177, 1954, p 165

    CAS  Google Scholar 

  2. R. Lagnborg,Acta Metall., Vol 12, July 1964

  3. J.F. Breedis and L. Kaufman,Metall. Trans., Vol 2, 1971, p 2359

    Article  CAS  Google Scholar 

  4. F. Lecroisey and A. Pineau,Metall. Trans., Vol 3, 1972, p 387

    CAS  Google Scholar 

  5. F. Abrassart,Metall. Trans., Vol 4, 1973, p 2205

    Article  CAS  Google Scholar 

  6. S.C. Tjong and N.J. Ho,Mater. Sci. Eng. A, Vol 102, 1988, p 125

    Article  Google Scholar 

  7. S.G.S. Raman and K.A. Padmanabhan,J. Mater. Sci. Lett., Vol 13, 1994, p 389

    Article  CAS  Google Scholar 

  8. E. Hornbogen.Acta Metall., Vol 26, 1978, p 147

    Article  CAS  Google Scholar 

  9. D. Hennessy, G. Steckel, and C. Altstetter,Metall. Trans., Vol 7A, 1976, p415

    CAS  Google Scholar 

  10. R.W. Hertzberg,Metall. Trans., Vol 5, 1974, p 306

    CAS  Google Scholar 

  11. C. Laird, inFatigue Crack Propagation, STP 415, ASTM, 1967, p 131

  12. D.W. Hoepner, inFatigue Crack Propagation, STP415, ASTM, 1967, p 486

  13. A.G. Pineau and R.M Pelloux,Metall. Trans., Vol 5, 1974, p 1103

    Article  CAS  Google Scholar 

  14. C. Bathias and R.M. Pelloux,Metall. Trans., Vol 4, 1973, p 1265

    Article  CAS  Google Scholar 

  15. G.R. Chanani, S.D. Antolovich, and W.W. Gerberich,Metall. Trans., Vol 3, 1972, p 2661

    Article  CAS  Google Scholar 

  16. B. Cotterell,J. Basic Eng. (Trans. ASME), Vol 87, 1965, p 230

    Google Scholar 

  17. W.F. Barclay, inAdvances in Technology of Stainless Steels and Related Alloys, STP 369, ASTM, 1963, p 26

  18. G. Franke and C.J. Altstetter,Metall. Trans., Vol 7A, 1976, p 1719

    CAS  Google Scholar 

  19. I. Wittkamp and E. Hornbogen,Prakt. Metallogr., Vol 14, 1977, p 237

    CAS  Google Scholar 

  20. E. Hornbogen,Acta Metall., Vol 26, 1978, p 147

    Article  CAS  Google Scholar 

  21. R.P. Reed,Acta Metall., Vol 10, 1962, p 865

    Article  CAS  Google Scholar 

  22. J. Singh,J. Mater. Sci., Vol 20, 1985, p 3157

    Article  CAS  Google Scholar 

  23. R.G. Luther and T.R. Williams,Mater. Sci., Vol II, 1977, p 219

    Google Scholar 

  24. P.C. Maxwell, A. Goldberg, and J.C. Shyne,Metall. Trans., Vol 5, 1974, p 1319

    Article  CAS  Google Scholar 

  25. D. Bhandarkar, V.F. Zackay, and E.R. Parker,Metall. Trans., Vol 3, 1972, p 2619

    Article  CAS  Google Scholar 

  26. J.R. Rice, inFatigue Crack Propagation, STP 415, ASTM, 1967, p 247

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, Z., Ahmed, M. Stress-induced martensitic transformation in metastable austenitic stainless steels: Effect on fatigue crack growth rate. JMEP 5, 201–208 (1996). https://doi.org/10.1007/BF02650887

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02650887

Keywords

Navigation