Skip to main content

Advertisement

Log in

Phospholipid scramblase 1 (PLSCR1) in villous trophoblast of the human placenta

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

A crucial factor for effective villous trophoblast fusion in the human placenta is the transient deregulation of plasma membrane phospholipid asymmetry leading to externalization of phosphatidylserine to the outer membrane leaflet. Screening of scramblase family members implicated in the collapse of phospholipid asymmetry revealed that phospholipid scramblase 1 (PLSCR1) is strongly expressed in villous trophoblast. Therefore, we assessed the putative role of PLSCR1 in villous trophoblast fusion. Spatio-temporal analysis in first trimester and term placenta showed abundant expression of PLSCR1 in syncytiotrophoblast, macrophages and endothelial cells, while it was virtually absent in villous cytotrophoblasts. For functional studies, BeWo cells, isolated primary term trophoblasts and first trimester villous explants were used. During forskolin-mediated BeWo cell differentiation, neither PLSCR1 mRNA nor protein levels showed significant changes. In contrast, when primary trophoblasts were stimulated with Br-cAMP, a decrease in PLSCR1 mRNA and protein expression was observed. To elucidate a role for PLSCR1 in syncytialization, we used RNA interference and a chemical scramblase inhibitor, R5421 (ethanedioic acid). Silencing of PLSCR1 using siRNA had no effects while inhibition of scramblase activity by R5421 increased GCM-1 mRNA expression, beta-hCG protein secretion and fusion rates of BeWo cells. In primary trophoblasts and villous explants, no effects of siRNA or R5421 treatment on fusion were detected. This study provides data on PLSCR1 localization and general expression in the human placenta. The data make it tempting to speculate on a role of PLSCR1 in negatively regulating trophoblast fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Albanese C, Kay TW, Troccoli NM, Jameson JL (1991) Novel cyclic adenosine 3′,5′-monophosphate response element in the human chorionic gonadotropin beta-subunit gene. Mol Endocrinol 5:693–702

    Article  CAS  PubMed  Google Scholar 

  • Amengual O, Atsumi T, Oku K, Suzuki E, Horita T, Yasuda S, Koike T (2013) Phospholipid scramblase 1 expression is enhanced in patients with antiphospholipid syndrome. Mod Rheumatol 23:81–88

    Article  CAS  PubMed  Google Scholar 

  • Baczyk D, Drewlo S, Proctor L, Dunk C, Lye S, Kingdom J (2009) Glial cell missing-1 transcription factor is required for the differentiation of the human trophoblast. Cell Death Differ 16:719–727

    Article  CAS  PubMed  Google Scholar 

  • Basse F, Stout JG, Sims PJ, Wiedmer T (1996) Isolation of an erythrocyte membrane protein that mediates Ca2+-dependent transbilayer movement of phospholipid. J Biol Chem 271:17205–17210

    Article  CAS  PubMed  Google Scholar 

  • Benaitreau D, Dos Santos E, Leneveu MC, De Mazancourt P, Pecquery R, Dieudonne MN (2010) Adiponectin promotes syncytialisation of BeWo cell line and primary trophoblast cells. Reprod Biol Endocrinol 8:128

  • Benirschke K, Burton GJ, Baergen RN (2012) Basic structure of the villous trees. In: Benirschke K, Burton GJ, Baergen RN (eds) Pathology of the human placenta, 6th edn. Springer, New York, pp 55–100

    Chapter  Google Scholar 

  • Bitbol M, Devaux PF (1988) Measurement of outward translocation of phospholipids across human erythrocyte membrane. Proc Natl Acad Sci USA 85:6783–6787

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Black S, Kadyrov M, Kaufmann P, Ugele B, Emans N, Huppertz B (2004) Syncytial fusion of human trophoblast depends on caspase 8. Cell Death Differ 11:90–98

    Article  CAS  PubMed  Google Scholar 

  • Bretscher MS (1972) Asymmetrical lipid bilayer structure for biological membranes. Nat New Biol 236:11–12

    Article  CAS  PubMed  Google Scholar 

  • Das M, Xu B, Lin L, Chakrabarti S, Shivaswamy V, Rote NS (2004) Phosphatidylserine efflux and intercellular fusion in a BeWo model of human villous cytotrophoblast. Placenta 25:396–407

    Article  CAS  PubMed  Google Scholar 

  • Dekkers DW, Comfurius P, Vuist WM, Billheimer JT, Dicker I, Weiss HJ, Zwaal RF, Bevers EM (1998) Impaired Ca2+-induced tyrosine phosphorylation and defective lipid scrambling in erythrocytes from a patient with Scott syndrome: a study using an inhibitor for scramblase that mimics the defect in Scott syndrome. Blood 91:2133–2138

    CAS  PubMed  Google Scholar 

  • Drewlo S, Levytska K, Kingdom J (2012) Revisiting the housekeeping genes of human placental development and insufficiency syndromes. Placenta 33:952–954

    Article  CAS  PubMed  Google Scholar 

  • Dunk CE, Gellhaus A, Drewlo S, Baczyk D, Potgens AJ, Winterhager E, Kingdom JC, Lye SJ (2012) The molecular role of connexin 43 in human trophoblast cell fusion. Biol Reprod 86:115

    Article  PubMed  Google Scholar 

  • Frasch SC, Henson PM, Nagaosa K, Fessler MB, Borregaard N, Bratton DL (2004) Phospholipid flip-flop and phospholipid scramblase 1 (PLSCR1) co-localize to uropod rafts in formylated Met–Leu–Phe-stimulated neutrophils. J Biol Chem 279:17625–17633

    Article  CAS  PubMed  Google Scholar 

  • Gancedo JM (2013) Biological roles of cAMP: variations on a theme in the different kingdoms of life. Biol Rev Camb Philos Soc 88:645–668

    Article  PubMed  Google Scholar 

  • Gauster M, Huppertz B (2010) The paradox of caspase 8 in human villous trophoblast fusion. Placenta 31:82–88

    Article  CAS  PubMed  Google Scholar 

  • Gauster M, Moser G, Orendi K, Huppertz B (2009) Factors involved in regulating trophoblast fusion: potential role in the development of preeclampsia. Placenta 30(Suppl A):S49–S54

  • Gauster M, Siwetz M, Orendi K, Moser G, Desoye G, Huppertz B (2010) Caspases rather than calpains mediate remodelling of the fodrin skeleton during human placental trophoblast fusion. Cell Death Differ 17:336–345

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez LJ, Gibbons E, Bailey RW, Fairbourn J, Nguyen T, Smith SK, Best KB, Nelson J, Judd AM, Bell JD (2009) The influence of membrane physical properties on microvesicle release in human erythrocytes. PMC Biophys 2:7

  • Guilbert LJ, Winkler-Lowen B, Sherburne R, Rote NS, Li H, Morrish DW (2002) Preparation and functional characterization of villous cytotrophoblasts free of syncytial fragments. Placenta 23:175–183

    Article  CAS  PubMed  Google Scholar 

  • Heikkila A, Tuomisto T, Hakkinen SK, Keski-Nisula L, Heinonen S, Yla-Herttuala S (2005) Tumor suppressor and growth regulatory genes are overexpressed in severe early-onset preeclampsia—an array study on case-specific human preeclamptic placental tissue. Acta Obstet Gynecol Scand 84:679–689

    Article  PubMed  Google Scholar 

  • Hiden U, Maier A, Bilban M, Ghaffari-Tabrizi N, Wadsack C, Lang I, Dohr G, Desoye G (2006) Insulin control of placental gene expression shifts from mother to foetus over the course of pregnancy. Diabetologia 49:123–131

    Article  CAS  PubMed  Google Scholar 

  • Holder BS, Tower CL, Forbes K, Mulla MJ, Aplin JD, Abrahams VM (2012) Immune cell activation by trophoblast-derived microvesicles is mediated by syncytin 1. Immunology 136:184–191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huppertz B, Frank HG, Kingdom JC, Reister F, Kaufmann P (1998) Villous cytotrophoblast regulation of the syncytial apoptotic cascade in the human placenta. Histochem Cell Biol 110:495–508

    Article  CAS  PubMed  Google Scholar 

  • Huppertz B, Tews DS, Kaufmann P (2001) Apoptosis and syncytial fusion in human placental trophoblast and skeletal muscle. Int Rev Cytol 205:215–253

    Article  CAS  PubMed  Google Scholar 

  • Jauniaux E, Watson AL, Hempstock J, Bao YP, Skepper JN, Burton GJ (2000) Onset of maternal arterial blood flow and placental oxidative stress. A possible factor in human early pregnancy failure. Am J Pathol 157:2111–2122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kilani RT, Chang LJ, Garcia-Lloret MI, Hemmings D, Winkler-Lowen B, Guilbert LJ (1997) Placental trophoblasts resist infection by multiple human immunodeficiency virus (HIV) type 1 variants even with cytomegalovirus coinfection but support HIV replication after provirus transfection. J Virol 71:6359–6372

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kliman HJ, Nestler JE, Sermasi E, Sanger JM, Strauss JF III (1986) Purification, characterization, and in vitro differentiation of cytotrophoblasts from human term placentae. Endocrinology 118:1567–1582

    Article  CAS  PubMed  Google Scholar 

  • Langbein M, Strick R, Strissel PL, Vogt N, Parsch H, Beckmann MW, Schild RL (2008) Impaired cytotrophoblast cell–cell fusion is associated with reduced Syncytin and increased apoptosis in patients with placental dysfunction. Mol Reprod Dev 75:175–183

    Article  PubMed  Google Scholar 

  • Lee X, Keith JC Jr, Stumm N, Moutsatsos I, McCoy JM, Crum CP, Genest D, Chin D, Ehrenfels C, Pijnenborg R, van Assche FA, Mi S (2001) Downregulation of placental syncytin expression and abnormal protein localization in pre-eclampsia. Placenta 22:808–812

    Article  CAS  PubMed  Google Scholar 

  • Meade ES, Ma YY, Guller S (2007) Role of hypoxia-inducible transcription factors 1alpha and 2alpha in the regulation of plasminogen activator inhibitor-1 expression in a human trophoblast cell line. Placenta 28:1012–1019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mi S, Lee X, Li X, Veldman GM, Finnerty H, Racie L, LaVallie E, Tang XY, Edouard P, Howes S, Keith JC Jr, McCoy JM (2000) Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403:785–789

    Article  CAS  PubMed  Google Scholar 

  • Miller RK, Genbacev O, Turner MA, Aplin JD, Caniggia I, Huppertz B (2005) Human placental explants in culture: approaches and assessments. Placenta 26:439–448

    Article  CAS  PubMed  Google Scholar 

  • Orendi K, Gauster M, Moser G, Meiri H, Huppertz B (2010) Effects of vitamins C and E, acetylsalicylic acid and heparin on fusion, beta-hCG and PP13 expression in BeWo cells. Placenta 31:431–438

    Article  CAS  PubMed  Google Scholar 

  • Ory S, Ceridono M, Momboisse F, Houy S, Chasserot-Golaz S, Heintz D, Calco V, Haeberle AM, Espinoza FA, Sims PJ, Bailly Y, Bader MF, Gasman S (2013) Phospholipid scramblase-1-induced lipid reorganization regulates compensatory endocytosis in neuroendocrine cells. J Neurosci 33:3545–3556

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucl Acids Res 30:e36

    Article  PubMed Central  PubMed  Google Scholar 

  • Potgens AJ, Drewlo S, Kokozidou M, Kaufmann P (2004) Syncytin: the major regulator of trophoblast fusion? Recent developments and hypotheses on its action. Hum Reprod Update 10:487–496

    Article  CAS  PubMed  Google Scholar 

  • Rauen T, Hedrich CM, Tenbrock K, Tsokos GC (2013) cAMP responsive element modulator: a critical regulator of cytokine production. Trends Mol Med 19:262–269

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sahu SK, Gummadi SN, Manoj N, Aradhyam GK (2007) Phospholipid scramblases: an overview. Arch Biochem Biophys 462:103–114

    Article  CAS  PubMed  Google Scholar 

  • Seamon KB, Padgett W, Daly JW (1981) Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc Natl Acad Sci USA 78:3363–3367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seigneuret M, Devaux PF (1984) ATP-dependent asymmetric distribution of spin-labeled phospholipids in the erythrocyte membrane: relation to shape changes. Proc Natl Acad Sci USA 81:3751–3755

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith SK, Farnbach AR, Harris FM, Hawes AC, Jackson LR, Judd AM, Vest RS, Sanchez S, Bell JD (2001) Mechanisms by which intracellular calcium induces susceptibility to secretory phospholipase A2 in human erythrocytes. J Biol Chem 276:22732–22741

    Article  CAS  PubMed  Google Scholar 

  • Stout JG, Basse F, Luhm RA, Weiss HJ, Wiedmer T, Sims PJ (1997) Scott syndrome erythrocytes contain a membrane protein capable of mediating Ca2+-dependent transbilayer migration of membrane phospholipids. J Clin Invest 99:2232–2238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Suzuki J, Umeda M, Sims PJ, Nagata S (2010) Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468:834–838

    Article  CAS  PubMed  Google Scholar 

  • Warke RV, Xhaja K, Martin KJ, Fournier MF, Shaw SK, Brizuela N, de Bosch N, Lapointe D, Ennis FA, Rothman AL, Bosch I (2003) Dengue virus induces novel changes in gene expression of human umbilical vein endothelial cells. J Virol 77:11822–11832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wice B, Menton D, Geuze H, Schwartz AL (1990) Modulators of cyclic AMP metabolism induce syncytiotrophoblast formation in vitro. Exp Cell Res 186:306–316

    Article  CAS  PubMed  Google Scholar 

  • Wiedmer T, Zhou Q, Kwoh DY, Sims PJ (2000) Identification of three new members of the phospholipid scramblase gene family. Biochim Biophys Acta 1467:244–253

    Article  CAS  PubMed  Google Scholar 

  • Wiedmer T, Zhao J, Nanjundan M, Sims PJ (2003) Palmitoylation of phospholipid scramblase 1 controls its distribution between nucleus and plasma membrane. Biochemistry 42:1227–1233

    Article  CAS  PubMed  Google Scholar 

  • Williamson P, Bevers EM, Smeets EF, Comfurius P, Schlegel RA, Zwaal RF (1995) Continuous analysis of the mechanism of activated transbilayer lipid movement in platelets. Biochemistry 34:10448–10455

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Kim A, David T, Palmer D, Jin T, Tien J, Huang F, Cheng T, Coughlin SR, Jan YN, Jan LY (2012) TMEM16F forms a Ca2+-activated cation channel required for lipid scrambling in platelets during blood coagulation. Cell 151:111–122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu C, Shen K, Lin M, Chen P, Lin C, Chang GD, Chen H (2002) GCMa regulates the syncytin-mediated trophoblastic fusion. J Biol Chem 277:50062–50068

    Article  CAS  PubMed  Google Scholar 

  • Yu A, McMaster CR, Byers DM, Ridgway ND, Cook HW (2003) Stimulation of phosphatidylserine biosynthesis and facilitation of UV-induced apoptosis in Chinese hamster ovary cells overexpressing phospholipid scramblase 1. J Biol Chem 278:9706–9714

    Article  CAS  PubMed  Google Scholar 

  • Yui J, Garcia-Lloret M, Brown AJ, Berdan RC, Morrish DW, Wegmann TG, Guilbert LJ (1994) Functional, long-term cultures of human term trophoblasts purified by column-elimination of CD9 expressing cells. Placenta 15:231–246

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Zhou Q, Wiedmer T, Sims PJ (1998) Level of expression of phospholipid scramblase regulates induced movement of phosphatidylserine to the cell surface. J Biol Chem 273:6603–6606

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Zhao J, Stout JG, Luhm RA, Wiedmer T, Sims PJ (1997) Molecular cloning of human plasma membrane phospholipid scramblase. A protein mediating transbilayer movement of plasma membrane phospholipids. J Biol Chem 272:18240–18244

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Zhao J, Wiedmer T, Sims PJ (2002) Normal hemostasis but defective hematopoietic response to growth factors in mice deficient in phospholipid scramblase 1. Blood 99:4030–4038

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Primary trophoblast cells from isolated term placentas were obtained from the laboratory of Larry Guilbert, University of Alberta Edmonton, Canada, isolated by Bonny Lowen and Meghan R. Riddell. Experiments were performed in Denise G. Hemmings’ laboratory, University of Alberta. First trimester placenta samples were kindly provided by Andreas Glasner, Graz, Austria. Beta-hCG analyses with ADIVA Centaur XP Immunoassay System were performed at Labor Dr. Berghold—Medizinische Diagnostik, Graz, Austria. Measurements of beta-hCG with ELISA 1911 kit were generously carried out by Martina Mackova, University of Alberta. Analysis of platelet aggregation was performed at the Institute of Experimental and Clinical Pharmacology, Medical University of Graz with the kind help of Martina Ofner. This work was partly supported by the START funding program and the Franz-Lanyar-Foundation of the Medical University of Graz granted to Gerit Moser (Project # 358) and Martin Gauster (Project # 359). Martin Gauster was supported by the Austrian Science Fund (FWF): P23859-B19. Veronika M. Berghold and Julia Kremshofer were funded by the PhD program Molecular Medicine of the Medical University of Graz. Additionally, funding support was provided by the Canadian Institutes of Health Research (CIHR) to Denise G. Hemmings (MOP 123488).

Conflict of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berthold Huppertz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berghold, V.M., Gauster, M., Hemmings, D.G. et al. Phospholipid scramblase 1 (PLSCR1) in villous trophoblast of the human placenta. Histochem Cell Biol 143, 381–396 (2015). https://doi.org/10.1007/s00418-014-1294-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-014-1294-y

Keywords

Navigation