Skip to main content

Advertisement

Log in

SimpleSTORM: a fast, self-calibrating reconstruction algorithm for localization microscopy

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Although there are many reconstruction algorithms for localization microscopy, their use is hampered by the difficulty to adjust a possibly large number of parameters correctly. We propose SimpleSTORM, an algorithm that determines appropriate parameter settings directly from the data in an initial self-calibration phase. The algorithm is based on a carefully designed yet simple model of the image acquisition process which allows us to standardize each image such that the background has zero mean and unit variance. This standardization makes it possible to detect spots by a true statistical test (instead of hand-tuned thresholds) and to de-noise the images with an efficient matched filter. By reducing the strength of the matched filter, SimpleSTORM also performs reasonably on data with high-spot density, trading off localization accuracy for improved detection performance. Extensive validation experiments on the ISBI Localization Challenge Dataset, as well as real image reconstructions, demonstrate the good performance of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. http://bigwww.epfl.ch/smlm/challenge/.

  2. https://github.com/ukoethe/simple-STORM.

  3. This is possible because the discretization noise is typically much smaller than the noise from other sources.

  4. http://bigwww.epfl.ch/smlm/datasets/index.html.

  5. http://bigwww.epfl.ch/smlm/evaluation/index.html.

References

  • Abraham AV, Ram S, Chao J, Ward ES, Ober RJ (2009) Quantitative study of single molecule location estimation techniques. Opt Express 17(26):23,352

    Article  CAS  Google Scholar 

  • Andersson SB (2008) Localization of a fluorescent source without numerical fitting. Opt Express 16(23):18,714–18,724

    Article  CAS  Google Scholar 

  • Anscombe FJ (1948) The transformation of Poisson, binomial and negative-binomial data. Biometrika 35(3/4):246–254

    Article  Google Scholar 

  • Baddeley D (2012) PYME—the python localization microscopy environment. http://code.google.com/p/python-microscopy/. Accessed: 12 Feb. 2014

  • Bates M, Huang B, Zhuang X (2008) Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes. Curr Opin Chem Biol 12(5):505–514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645

    Article  CAS  PubMed  Google Scholar 

  • Boulanger J, Kervrann C, Bouthemy P, Elbau P, Sibarita JB, Salamero J (2010) Patch-based nonlocal functional for denoising fluorescence microscopy image sequences. IEEE Trans Med Imaging 29(2):442–454

    Article  PubMed  Google Scholar 

  • Brede N, Lakadamyali M (2012) GraspJ: an open source, real-time analysis package for super-resolution imaging. Optl Nanoscopy 1(1):1–7

    Article  Google Scholar 

  • Egner A, Geisler C, von Middendorff C, Bock H, Wenzel D, Medda R, Andresen M, Stiel AC, Jakobs S, Eggeling C et al (2007) Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophys J 93(9):3285–3290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395

    Article  Google Scholar 

  • Grüll F, Kirchgessner M, Kaufmann R, Hausmann M, Kebschull U (2011) Accelerating image analysis for localization microscopy with FPGAs. In: Field Programmable Logic and Applications (FPL), 2011 International Conference, pp 1–5

  • Hedde PN, Fuchs J, Oswald F, Wiedenmann J, Nienhaus GU (2009) Online image analysis software for photoactivation localization microscopy. Nat Methods 6:689–690

    Article  CAS  PubMed  Google Scholar 

  • Heilemann M (2010) Fluorescence microscopy beyond the diffraction limit. J Biotechnol 149(4):243–251

    Article  CAS  PubMed  Google Scholar 

  • Heilemann M, van de Linde S, Schüttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angewandte Chemie Int Ed 47(33):6172–6176

    Article  CAS  Google Scholar 

  • Heilemann M, van de Linde S, Mukherjee A, Sauer M (2009) Super-resolution imaging with small organic fluorophores. Angewandte Chemie Int Ed 48(37):6903–6908

    Article  CAS  Google Scholar 

  • Henriques R, Mhlanga MM (2009) PALM and STORM: what hides beyond the Rayleigh limit? Biotechnol J 4(6):846–857

    Article  CAS  PubMed  Google Scholar 

  • Henriques R, Lelek M, Fornasiero EF, Valtorta F, Zimmer C, Mhlanga MM (2010) QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nat Methods 7(5):339–340

    Article  CAS  PubMed  Google Scholar 

  • Herbert A (2012) PeakFit ImageJ plugins for single-molecule light microscopy. http://www.sussex.ac.uk/gdsc/intranet/microscopy/imagej/smlm_plugins. Accessed: 12 Feb. 2014

  • Högbom JA (1974) Aperture synthesis with a non-regular distribution of interferometer baselines. Astron Astrophys Suppl 15:417

    Google Scholar 

  • Holden S, Uphoff S, Kapanidis A (2011) DAOSTORM: an algorithm for high-density super-resolution microscopy. Nat Methods 8(4):279

    Article  CAS  PubMed  Google Scholar 

  • Huang B (2010) Super-resolution optical microscopy: multiple choices. Curr Opin Chem Biol 14(1):10–14

    Article  CAS  PubMed  Google Scholar 

  • Huang F, Schwartz SL, Byars JM, Lidke KA (2011) Simultaneous multiple-emitter fitting for single molecule super-resolution imaging. Biomed Opt Express 2(5):1377–1393

    Article  PubMed Central  PubMed  Google Scholar 

  • Izeddin I, Boulanger J, Racine V, Specht C, Kechkar A, Nair D, Triller A, Choquet D, Dahan M, Sibarita J (2012) Wavelet analysis for single molecule localization microscopy. Opt Express 20(3):2081–2095

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Min J, Carlini L, Unser M, Manley S, Jeon D, Ye J (2013) Fast maximum likelihood high-density low-SNR super-resolution localization microscopy. In: Proceedings 10th International Workshop Sampling Theory and Applications (SampTA’13), pp 285–288

  • Křížek P, Raška I, Hagen GM (2011) Minimizing detection errors in single molecule localization microscopy. Opt Express 19(4):3226–3235

    Article  PubMed  Google Scholar 

  • Lidke K, Rieger B, Lidke D, Jovin T (2005) The role of photon statistics in fluorescence anisotropy imaging. IEEE Trans Image Process 14(9):1237–1245

    Article  PubMed  Google Scholar 

  • Min J, Vonesch C, Olivier N, Kirshner H, Manley S, Ye J, Unser M (2013) Continuous localization using sparsity constraints for high-density super-resolution microscopy. In: Proceedings ISBI’13, pp 181–184

  • Muranyi W, Malkusch S, Müller B, Heilemann M, Kräusslich HG (2013) Super-resolution microscopy reveals specific recruitment of hiv-1 envelope proteins to viral assembly sites dependent on the envelope c-terminal tail. PLoS Pathog 9(2):9(2):e198–e1003

    Article  Google Scholar 

  • Smith CS, Joseph N, Rieger B, Lidke KA (2010) Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat Methods 7(5):373–375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stallinga S, Rieger B (2012) Position and orientation estimation of fixed dipole emitters using an effective Hermite point spread function model. Opt Express 20(6):5896–5921

    Article  PubMed  Google Scholar 

  • Stetson PB (1987), DAOPHOT: a computer program for crowded-field stellar photometry. Publications of the Astronomical Society of the Pacific, pp 191–222

  • Stuurman N (2012) Localization Microscopy MicroManager Plugin. http://micro-manager.org/wiki/Localization_Microscopy. Accessed: 12 Feb. 2014

  • Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5):2775–2783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Turin G (1960) An introduction to matched filters. IRE Trans Inf Theory 6(3):311–329

    Article  Google Scholar 

  • Wolter S, Schüttpelz M, Tscherepanow M, van de Linde S, Heilemann M, Sauer M (2010) Real-time computation of subdiffraction-resolution fluorescence images. J Microsc 237(1):12–22

    Article  CAS  PubMed  Google Scholar 

  • Yu J (2011) Octane ImageJ plugin for super-resolution imaging and single molecule tracking. https://github.com/jiyuuchc/Octane. Accessed: 12 Feb. 2014

  • Zhu L, Zhang W, Elnatan D, Huang B (2012) Faster STORM using compressed sensing. Nat Methods 9(7):721–723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by contract research “Methoden für die Lebenswissenschaften” of the Baden-Württemberg Stiftung. We are grateful to Mike Heilemann, Varun Venkataramani and Benjamin Flottmann for providing the raw data of the images presented in this paper, as well as for giving many helpful comments on the algorithm. We also thank the organizers of the ISBI Localization Microscopy Challenge for the permission to use their artificial data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ullrich Köthe.

Additional information

Ullrich Köthe and Frank Herrmannsdörfer have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köthe, U., Herrmannsdörfer, F., Kats, I. et al. SimpleSTORM: a fast, self-calibrating reconstruction algorithm for localization microscopy. Histochem Cell Biol 141, 613–627 (2014). https://doi.org/10.1007/s00418-014-1211-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-014-1211-4

Keywords

Navigation