Skip to main content
Log in

Development of a simple, repeatable, and cost-effective extracellular matrix for long-term xeno-free and feeder-free self-renewal of human pluripotent stem cells

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

A Correction to this article was published on 25 January 2021

This article has been updated

Abstract

Given the potential importance of human pluripotent stem cells (hPSCs) in translational research and regenerative medicine, the aim of the present study was to develop a simple, safe, and cost-effective substrate to expand hPSCs. We report the development of an extracellular matrix (ECM), designated “RoGel,” based on conditioned medium (CM) of human fibroblasts under serum- and xeno-free culture conditions. The long-term self-renewal of hPSCs on RoGel was also assessed. The results showed that self-renewal, pluripotency, plating efficiency, and cloning efficiency of hPSCs on this newly developed ECM were similar to those of Matrigel, the conventional mouse-cell line-derived ECM. The cells had the capability to passage mechanically on a cold surface, which resulted in their long-term maintenance with normal karyotype. We have demonstrated that CM-coated plates preserved for 1 year at room temperature maintained the capability of hPSC expansion. This ECM provides an attractive hPSC culture platform for both research and future therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

References

  • Abraham S, Riggs MJ, Nelson K, Lee V, Rao RR (2010) Characterization of human fibroblast-derived extracellular matrix components for human pluripotent stem cell propagation. Acta Biomater 6(12):4622–4633

    Article  PubMed  CAS  Google Scholar 

  • Amit M, Shariki C, Margulets V, Itskovitz-Eldor J (2004) Feeder layer-and serum-free culture of human embryonic stem cells. Biol Reprod 70(3):837–845

    Article  PubMed  CAS  Google Scholar 

  • Baharvand H, Ashtiani SK, Taee A, Massumi M, Valojerdi MR, Yazdi PE, Moradi SZ, Farrokhi A (2006) Generation of new human embryonic stem cell lines with diploid and triploid karyotypes. Dev Growth Differ 48(2):117–128

    Article  PubMed  Google Scholar 

  • Baharvand H, Salekdeh GH, Taei A, Mollamohammadi S (2010) An efficient and easy-to-use cryopreservation protocol for human ES and iPS cells. Nat Protoc 5(3):588–594

    Article  PubMed  CAS  Google Scholar 

  • Beattie GM, Lopez AD, Bucay N, Hinton A, Firpo MT, King CC, Hayek A (2005) Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells 23(4):489–495

    Article  PubMed  CAS  Google Scholar 

  • Braam SR, Zeinstra L, Litjens S, Ward-van Oostwaard D, van den Brink S, van Laake L, Lebrin F, Kats P, Hochstenbach R, Passier R, Sonnenberg A, Mummery CL (2008) Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. Stem Cells 26(9):2257–2265

    Article  PubMed  CAS  Google Scholar 

  • Brafman DA, Shah KD, Fellner T, Chien S, Willert K (2009) Defining long-term maintenance conditions of human embryonic stem cells with arrayed cellular microenvironment technology. Stem Cells Dev 18(8):1141–1154

    Article  PubMed  Google Scholar 

  • Brafman DA, Chang CW, Fernandez A, Willert K, Varghese S, Chien S (2010) Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. Biomaterials 31(34):9135–9144

    Article  PubMed  CAS  Google Scholar 

  • Carpenter MK, Rosler ES, Fisk GJ, Brandenberger R, Ares X, Miura T, Lucero M, Rao MS (2004) Properties of four human embryonic stem cell lines maintained in a feeder-free culture system. Dev Dyn 229(2):243–258

    Article  PubMed  CAS  Google Scholar 

  • Chin AC, Fong WJ, Goh LT, Philp R, Oh SK, Choo AB (2007) Identification of proteins from feeder conditioned medium that support human embryonic stem cells. J Biotechnol 130(3):320–328

    Article  PubMed  CAS  Google Scholar 

  • Domogatskaya A, Rodin S, Boutaud A, Tryggvason K (2008) Laminin-511 but not -332, -111, or -411 enables mouse embryonic stem cell self-renewal in vitro. Stem Cells 26(11):2800–2809

    Article  PubMed  CAS  Google Scholar 

  • Draper JS, Smith K, Gokhale P, Moore HD, Maltby E, Johnson J, Meisner L, Zwaka TP, Thomson JA, Andrews PW (2004) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22(1):53–54

    Article  PubMed  CAS  Google Scholar 

  • Escobedo-Lucea C, Ayuso-Sacido A, Xiong C, Prado-Lopez S, del Pino MS, Melguizo D, Bellver-Estelles C, Gonzalez-Granero S, Valero ML, Moreno R, Burks DJ, Stojkovic M (2012) Development of a human extracellular matrix for applications related with stem cells and tissue engineering. Stem Cell Rev 8(1):170–183

    Article  PubMed  Google Scholar 

  • Evseenko D, Schenke-Layland K, Dravid G, Zhu Y, Hao Q-L, Scholes J, Wang XC, Maclellan WR, Crooks GM (2009) Identification of the critical extracellular matrix proteins that promote human embryonic stem cell assembly. Stem Cells Dev 18(6):919–928

    Article  PubMed  CAS  Google Scholar 

  • Genbacev O, Krtolica A, Zdravkovic T, Brunette E, Powell S, Nath A, Caceres E, McMaster M, McDonagh S, Li Y, Mandalam R, Lebkowski J, Fisher SJ (2005) Serum-free derivation of human embryonic stem cell lines on human placental fibroblast feeders. Fertil Steril 83:1517–1529

    Article  PubMed  Google Scholar 

  • Gonzalez R, Jennings LL, Knuth M, Orth AP, Klock HE, Ou W, Feuerhelm J, Hull MV, Koesema E, Wang Y, Zhang J, Wu C, Cho CY, Su AI, Batalov S, Chen H, Johnson K, Laffitte B, Nguyen DG, Snyder EY, Schultz PG, Harris JL, Lesley SA (2010) Screening the mammalian extracellular proteome for regulators of embryonic human stem cell pluripotency. Proc Natl Acad Sci USA 107(8):3552–3557

    Article  PubMed  CAS  Google Scholar 

  • Heng BC, Li J, Chen AK, Reuveny S, Cool SM, Birch WR, Oh SK (2012) Translating human embryonic stem cells from 2-dimensional to 3-dimensional cultures in a defined medium on laminin- and vitronectin-coated surfaces. Stem Cells Dev 21(10):1701–1715

    Google Scholar 

  • Hongisto H, Vuoristo S, Mikhailova A, Suuronen R, Virtanen I, Otonkoski T, Skottman H (2012) Laminin-511 expression is associated with the functionality of feeder cells in human embryonic stem cell culture. Stem Cell Res 8(1):97–108

    Article  PubMed  CAS  Google Scholar 

  • Hughes CS, Postovit LM, Lajoie GA (2010) Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10(9):1886–1890

    Article  PubMed  CAS  Google Scholar 

  • Irwin EF, Gupta R, Dashti DC, Healy KE (2011) Engineered polymer-media interfaces for the long-term self-renewal of human embryonic stem cells. Biomaterials 32(29):6912–6919

    Article  PubMed  CAS  Google Scholar 

  • Iwasa F, Tsukimura N, Sugita Y, Kanuru RK, Kubo K, Hasnain H, Att W, Ogawa T (2011) TiO2 micro-nano-hybrid surface to alleviate biological aging of UV-photofunctionalized titanium. Int J Nanomed 6:1327–1341

    Article  CAS  Google Scholar 

  • Klim JR, Li L, Wrighton PJ, Piekarczyk MS, Kiessling LL (2010) A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nat Methods 7(12):989–994

    Article  PubMed  CAS  Google Scholar 

  • Klimanskaya I, Chung Y, Meisner L, Johnson J, West MD, Lanza R (2005) Human embryonic stem cells derived without feeder cells. Lancet 365:1636–1641

    Article  PubMed  CAS  Google Scholar 

  • Klimanskaya I, Rosenthal N, Lanza R (2008) Derive and conquer: sourcing and differentiating stem cells for therapeutic applications. Nat Rev Drug Discov 7(2):131–142

    Article  PubMed  CAS  Google Scholar 

  • Larijani MR, Seifinejad A, Pournasr B, Hajihoseini V, Hassani SN, Totonchi M, Yousefi M, Shamsi F, Salekdeh GH, Baharvand H (2011) Long-term maintenance of undifferentiated human embryonic and induced pluripotent stem cells in suspension. Stem Cells Dev 20(11):1911–1923

    Google Scholar 

  • Li D, Zhou J, Wang L, Shin ME, Su P, Lei X, Kuang H, Guo W, Yang H, Cheng L, Tanaka TS, Leckband DE, Reynolds AB, Duan E, Wang F (2010) Integrated biochemical and mechanical signals regulate multifaceted human embryonic stem cell functions. J Cell Biol 191(3):631–644

    Article  PubMed  CAS  Google Scholar 

  • Lim JW, Bodnar A (2002) Proteome analysis of conditioned medium from mouse embryonic fibroblast feeder layers which support the growth of human embryonic stem cells. Proteomics 2(9):1187–1203

    Article  PubMed  CAS  Google Scholar 

  • Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, Crandall LJ, Daigh CA, Conard KR, Piekarczyk MS (2006) Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 24(2):185–187

    Article  PubMed  CAS  Google Scholar 

  • Martin Y, Vermette P (2005) Bioreactors for tissue mass culture: design, characterization, and recent advances. Biomaterials 26:7481–7503

    Article  PubMed  CAS  Google Scholar 

  • Mei Y, Saha K, Bogatyrev SR, Yang J, Hook AL, Kalcioglu ZI, Cho SW, Mitalipova M, Pyzocha N, Rojas F (2010) Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat Mater 9(9):768–778

    Article  PubMed  CAS  Google Scholar 

  • Melkoumian Z, Weber JL, Weber DM, Fadeev AG, Zhou Y, Dolley-Sonneville P, Yang J, Qiu L, Priest CA, Shogbon C (2010) Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotechnol 28(6):606–610

    Article  PubMed  CAS  Google Scholar 

  • Meng G, Liu S, Li X, Krawetz R, Rancourt DE (2010) Extracellular matrix isolated from foreskin fibroblasts supports long-term xeno-free human embryonic stem cell culture. Stem Cells Dev 19(4):547–556

    Article  PubMed  CAS  Google Scholar 

  • Mitalipova MM, Rao RR, Hoyer DM, Johnson JA, Meisner LF, Jones KL, Dalton S, Stice SL (2005) Preserving the genetic integrity of human embryonic stem cells. Nat Biotechnol 23(1):19–20

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki T, Futaki S, Hasegawa K, Kawasaki M, Sanzen N, Hayashi M, Kawase E, Sekiguchi K, Nakatsuji N, Suemori H (2008) Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochem Biophys Res Commun 375(1):27–32

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki T, Futaki S, Suemori H, Taniguchi Y, Yamada M, Kawasaki M, Hayashi M, Kumagai H, Nakatsuji N, Sekiguchi K, Kawase E (2012) Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nat Commun 3:1236

    Article  PubMed  Google Scholar 

  • Mollamohammadi S, Taei A, Pakzad M, Totonchi M, Seifinejad A, Masoudi N, Baharvand H (2009) A simple and efficient cryopreservation method for feeder-free dissociated human induced pluripotent stem cells and human embryonic stem cells. Hum Reprod 24(10):2468–2476

    Google Scholar 

  • Pakzad M, Totonchi M, Taei A, Seifinejad A, Hassani SN, Baharvand H (2010) Presence of a ROCK inhibitor in extracellular matrix supports more undifferentiated growth of feeder-free human embryonic and induced pluripotent stem cells upon passaging. Stem Cell Rev 6(1):96–107

    Article  PubMed  CAS  Google Scholar 

  • Prowse AB, McQuade LR, Bryant KJ, Van Dyk DD, Tuch BE, Gray PP (2005) A proteome analysis of conditioned media from human neonatal fibroblasts used in the maintenance of human embryonic stem cells. Proteomics 5(4):978–989

    Article  PubMed  CAS  Google Scholar 

  • Prowse ABJ, McQuade LR, Bryant KJ, Marcal H, Gray PP (2007) Identification of potential pluripotency determinants for human embryonic stem cells following proteomic analysis of human and mouse fibroblast conditioned media. J Proteome Res 6(9):3796–3807

    Article  PubMed  CAS  Google Scholar 

  • Prowse AB, Doran MR, Cooper-White JJ, Chong F, Munro TP, Fitzpatrick J, Chung TL, Haylock DN, Gray PP, Wolvetang EJ (2010) Long term culture of human embryonic stem cells on recombinant vitronectin in ascorbate free media. Biomaterials 31(32):8281–8288

    Article  PubMed  CAS  Google Scholar 

  • Rajala K, Hakala H, Panula S, Aivio S, Pihlajamaki H, Suuronen R, Hovatta O, Skottman H (2007) Testing of nine different xeno-free culture media for human embryonic stem cell cultures. Hum Reprod 22(5):1231–1238

    Article  PubMed  CAS  Google Scholar 

  • Rodin S, Domogatskaya A, Strom S, Hansson EM, Chien KR, Inzunza J, Hovatta O, Tryggvason K (2010) Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotechnol 28(6):611–615

    Article  PubMed  CAS  Google Scholar 

  • Ruggiero F, Koch M (2008) Making recombinant extracellular matrix proteins. Methods 45(1):75–85

    Article  PubMed  CAS  Google Scholar 

  • Saha K, Mei Y, Reisterer CM, Pyzocha NK, Yang J, Muffat J, Davies MC, Alexander MR, Langer R, Anderson DG (2011) Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions. Proc Natl Acad Sci 108(46):18714–18719

    Article  PubMed  CAS  Google Scholar 

  • Shahbazi E, Kiani S, Gourabi H, Baharvand H (2011) Electrospun nanofibrillar surfaces promote neuronal differentiation and function from human embryonic stem cells. Tissue Eng Part A 17(23–24):3021–3031

    Article  PubMed  CAS  Google Scholar 

  • Steiner D, Khaner H, Cohen M, Even-Ram S, Gil Y, Itsykson P, Turetsky T, Idelson M, Aizenman E, Ram R (2010) Derivation, propagation and controlled differentiation of human embryonic stem cells in suspension. Nat Biotechnol 28(4):361–364

    Article  PubMed  CAS  Google Scholar 

  • Stojkovic P, Lako M, Przyborski S, Stewart R, Armstrong L, Evans J, Zhang X, Stojkovic M (2005) Human-serum matrix supports undifferentiated growth of human embryonic stem cells. Stem Cells 23(7):895–902

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  PubMed  CAS  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145

    Article  PubMed  CAS  Google Scholar 

  • Totonchi M, Taei A, Seifinejad A, Tabebordbar M, Rassouli H, Farrokhi A, Gourabi H, Aghdami N, Hosseini-Salekdeh G, Baharvand H (2010) Feeder- and serum-free establishment and expansion of human induced pluripotent stem cells. Int J Dev Biol 54(5):877–886

    Article  PubMed  CAS  Google Scholar 

  • Villa-Diaz LG, Nandivada H, Ding J, Nogueira-de-Souza NC, Krebsbach PH, O’Shea KS, Lahann J, Smith GD (2010) Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat Biotechnol 28(6):581–583

    Article  PubMed  CAS  Google Scholar 

  • Villa-Diaz LG, Ross AM, Lahann J, Krebsbach PH (2013) Concise review: the evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings. Stem Cells 31(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • Vuoristo S, Virtanen I, Takkunen M, Palgi J, Kikkawa Y, Rousselle P, Sekiguchi K, Tuuri T, Otonkoski T (2009) Laminin isoforms in human embryonic stem cells: synthesis, receptor usage and growth support. J Cell Mol Med 13(8B):2622–2633

    Google Scholar 

  • Wang G, Zhang H, Zhao Y, Li J, Cai J, Wang P, Meng S, Feng J, Miao C, Ding M, Li D, Deng H (2005) Noggin and bFGF cooperate to maintain the pluripotency of human embryonic stem cells in the absence of feeder layers. Biochem Biophys Res Commun 330(3):934–942

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Muguruma K (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25(6):681–686

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, Carpenter MK (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19(10):971–974

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Rosler E, Jiang J, Lebkowski JS, Gold JD, O’Sullivan C, Delavan-Boorsma K, Mok M, Bronstein A, Carpenter MK (2005) Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells 23(3):315–323

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Zhu X, Hahm HS, Wei W, Hao E, Hayek A, Ding S (2010) Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules. Proc Natl Acad Sci 107(18):8129

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Mjoseng HK, Hoeve MA, Bauer NG, Pells S, Besseling R, Velugotla S, Tourniaire G, Kishen RE, Tsenkina Y, Armit C, Duffy CR, Helfen M, Edenhofer F, de Sousa PA, Bradley M (2013) A thermoresponsive and chemically defined hydrogel for long-term culture of human embryonic stem cells. Nat Commun 4:1335

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by grants provided by Royan Institute and the Iranian Council of Stem Cell Research and Technology. We appreciate the technical assistance of Ali Akhlaghi, Azam Samadian, Ehsan Janzamin, Fazel Samani, Najmeh Sadat Masoudi, Behrooz Asgari, Ebrahim Shahbazi, and Mostafa Najar.

Conflict of interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Baharvand.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 33 kb)

418_2013_1144_MOESM2_ESM.tif

Supplementary Figure 1. Feeder cells derived from human dermal fibroblasts (HDFs) and foreskin fibroblasts (HFF) at low and high densities. (TIFF 7,154 kb)

418_2013_1144_MOESM3_ESM.tif

Supplementary Figure 2. Characterization of pluripotency markers and karyotype of hPSCs grown on RoGel. The lines are characterized after five to twenty passages. (A) hPSCs on RoGel retained key properties of pluripotent markers. Morphology of Royan H6 after ten passage and expressions of ALP, OCT4, SSEA3, and TRA-1-81. hiPSC4 and Royan H5 expressed the markers (not shown). Nuclei stained with DAPI (blue). (B) The karyotype of hESCs and hiPSCs after several passages on RoGel was normal. (TIFF 8,331 kb)

418_2013_1144_MOESM4_ESM.tif

Supplementary Figure 3. In vitro and in vivo differentiation of hPSCs grown on RoGel. (A) RT–PCR analysis of in vitro differentiation of hESCs (Royan H6) by EB formation showed the expression of markers of the three embryonic germ layers. (B) Directed differentiation of Royan H6 after 16 passages on RoGel into neural cells in the presence of Noggin, RA, and bFGF. Immunocytofluorescence of the cells showed mature neural markers, TUJ1 in green. Nuclei were stained with propidium iodide (PI) in red. (C) Teratoma formation, macroscopic view of teratoma with distinct retinal pigment epithelium (RPE) on teratoma. Representative photomicrographs showing derivatives from all three germ layers in the teratomas including RPE (ectodermal marker); cartilage (mesodermal marker); and intestinal epithelium (endodermal marker). (TIFF 8,206 kb)

418_2013_1144_MOESM5_ESM.tif

Supplementary Figure 4. Fractionation of RoGel to support self-renewal of hPSCs. (A) The CM fractionated to >10 kDa, <10 kDa, >30 kDa, and <30 kDa by Millipore’s Amicon Ultra-15 centrifugal filter devices based on the molecular weight of CM’s proteins (MWCO). (B) Royan H6 hESCs were cultured on the fractions of CM. Cells grew with hESC morphology when the plates were coated with >10 kDa or >30 kDa fractionated CM. (TIFF 7,062 kb)

418_2013_1144_MOESM6_ESM.tif

Supplementary Figure 5. Phase contrast microscopy images of plates coated with CM or MG. Phase contrast microscopy of air dried- and fresh-coated surfaces of MG and CM in different conditions. The air dried-coated surfaces of CM with >10 kDa and >30 kDa fractions are similar to both air dried MG and CM. (TIFF 12,257 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pakzad, M., Ashtiani, M.K., Mousavi-Gargari, S.L. et al. Development of a simple, repeatable, and cost-effective extracellular matrix for long-term xeno-free and feeder-free self-renewal of human pluripotent stem cells. Histochem Cell Biol 140, 635–648 (2013). https://doi.org/10.1007/s00418-013-1144-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-013-1144-3

Keywords

Navigation