Skip to main content
Log in

The vitamin C transporter SVCT2 is down-regulated during postnatal development of slow skeletal muscles

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Vitamin C plays key roles in cell homeostasis, acting as a potent antioxidant as well as a positive modulator of cell differentiation. In skeletal muscle, the vitamin C/sodium co-transporter SVCT2 is preferentially expressed in oxidative slow fibers. Besides, SVCT2 is up-regulated upon the early fusion of primary myoblasts. However, our knowledge of the postnatal expression profile of SVCT2 remains scarce. Here we have analyzed the expression of SVCT2 during postnatal development of the chicken slow anterior and fast posterior latissimus dorsi muscles, ranging from day 7 to adulthood. SVCT2 expression is consistently higher in the slow than in the fast muscle at all stages. After hatching, SVCT2 expression is significantly down-regulated in the anterior latissimus dorsi, which nevertheless maintains a robust slow phenotype. Taking advantage of the C2C12 cell line to recapitulate myogenesis, we confirmed that SVCT2 is expressed in a biphasic fashion, reaching maximal levels upon early myoblasts fusion and decreasing during myotube growth. Together, these findings suggest that the dynamic expression levels of SVCT2 could be relevant for different features of skeletal muscle physiology, such as muscle cell formation, growth and activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bader D, Masaki T, Fischman DA (1982) Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro. J Cell Biol 95(3):763–770

    Article  PubMed  CAS  Google Scholar 

  • Biressi S, Molinaro M, Cossu G (2007a) Cellular heterogeneity during vertebrate skeletal muscle development. Dev Biol 308(2):281–293

    Article  PubMed  CAS  Google Scholar 

  • Biressi S, Tagliafico E, Lamorte G, Monteverde S, Tenedini E, Roncaglia E, Ferrari S, Cusella-De Angelis MG, Tajbakhsh S, Cossu G (2007b) Intrinsic phenotypic diversity of embryonic and fetal myoblasts is revealed by genome-wide gene expression analysis on purified cells. Dev Biol 304(2):633–651

    Article  PubMed  CAS  Google Scholar 

  • Bryson-Richardson RJ, Currie PD (2008) The genetics of vertebrate myogenesis. Nat Rev Genet 9(8):632–646

    Article  PubMed  CAS  Google Scholar 

  • Caprile T, Salazar K, Astuya A, Cisternas P, Silva-Alvarez C, Montecinos H, Millan C, de Los Angeles Garcia M, Nualart F (2009) The Na+-dependent l-ascorbic acid transporter SVCT2 expressed in brainstem cells, neurons, and neuroblastoma cells is inhibited by flavonoids. J Neurochem 108(3):563–577

    Article  PubMed  CAS  Google Scholar 

  • Castro T, Low M, Salazar K, Montecinos H, Cifuentes M, Yanez AJ, Slebe JC, Figueroa CD, Reinicke K, de los Angeles Garcia M, Henriquez JP, Nualart F (2008) Differential distribution of the sodium–vitamin C cotransporter-1 along the proximal tubule of the mouse and human kidney. Kidney Int 74(10):1278–1286

    Article  PubMed  CAS  Google Scholar 

  • Daruwala R, Song J, Koh WS, Rumsey SC, Levine M (1999) Cloning and functional characterization of the human sodium-dependent vitamin C transporters hSVCT1 and hSVCT2. FEBS Lett 460(3):480–484

    Article  PubMed  CAS  Google Scholar 

  • DiMario JX, Stockdale FE (1997) Both myoblast lineage and innervation determine fiber type and are required for expression of the slow myosin heavy chain 2 gene. Dev Biol 188(1):167–180

    Article  PubMed  CAS  Google Scholar 

  • Eldridge CF, Bunge MB, Bunge RP, Wood PM (1987) Differentiation of axon-related Schwann cells in vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation. J Cell Biol 105(2):1023–1034

    Article  PubMed  CAS  Google Scholar 

  • Esteban MA, Pei D (2012) Vitamin C improves the quality of somatic cell reprogramming. Nat Genet 44(4):366–367

    Article  PubMed  CAS  Google Scholar 

  • Franceschi RT, Iyer BS, Cui Y (1994) Effects of ascorbic acid on collagen matrix formation and osteoblast differentiation in murine MC3T3-E1 cells. J Bone Miner Res 9(6):843–854

    Article  PubMed  CAS  Google Scholar 

  • Fredette BJ, Landmesser LT (1991) Relationship of primary and secondary myogenesis to fiber type development in embryonic chick muscle. Dev Biol 143(1):1–18

    Article  PubMed  CAS  Google Scholar 

  • Frei B, England L, Ames BN (1989) Ascorbate is an outstanding antioxidant in human blood plasma. Proc Natl Acad Sci USA 86(16):6377–6381

    Article  PubMed  CAS  Google Scholar 

  • Gordon T, Perry R, Srihari T, Vrbova G (1977) Differentiation of slow and fast muscles in chickens. Cell Tissue Res 180(2):211–222

    Article  PubMed  CAS  Google Scholar 

  • Hughes SM, Taylor JM, Tapscott SJ, Gurley CM, Carter WJ, Peterson CA (1993) Selective accumulation of MyoD and myogenin mRNAs in fast and slow adult skeletal muscle is controlled by innervation and hormones. Development 118(4):1137–1147

    PubMed  CAS  Google Scholar 

  • Jackson MJ, Pye D, Palomero J (2007) The production of reactive oxygen and nitrogen species by skeletal muscle. J Appl Physiol 102(4):1664–1670

    Article  PubMed  CAS  Google Scholar 

  • Kaprielian Z, Fambrough DM (1987) Expression of fast and slow isoforms of the Ca2+-ATPase in developing chick skeletal muscle. Dev Biol 124(2):490–503

    Article  PubMed  CAS  Google Scholar 

  • Lee JY, Chang MY, Park CH, Kim HY, Kim JH, Son H, Lee YS, Lee SH (2003) Ascorbate-induced differentiation of embryonic cortical precursors into neurons and astrocytes. J Neurosci Res 73(2):156–165

    Article  PubMed  CAS  Google Scholar 

  • Low M, Sandoval D, Aviles E, Perez F, Nualart F, Henriquez JP (2009) The ascorbic acid transporter SVCT2 is expressed in slow-twitch skeletal muscle fibres. Histochem Cell Biol 131(5):565–574

    Article  PubMed  CAS  Google Scholar 

  • Low M, Sandoval D, Morales B, Nualart F, Henriquez JP (2011) Up-regulation of the vitamin C transporter SVCT2 upon differentiation and depolarization of myotubes. FEBS Lett 585(2):390–396

    Article  PubMed  CAS  Google Scholar 

  • McGinley C, Shafat A, Donnely A (2009) Does antioxidant vitamin supplementation protect against muscle damage? Sport Med 39(12):1011–1032

    Article  Google Scholar 

  • Mitsumoto Y, Liu Z, Klip A (1994) A long-lasting vitamin C derivative, ascorbic acid 2-phosphate, increases myogenin gene expression and promotes differentiation in L6 muscle cells. Biochem Biophys Res Commun 199(1):394–402

    Article  PubMed  CAS  Google Scholar 

  • Obinata T, Reinach FC, Bader DM, Masaki T, Kitani S, Fischman DA (1984) Immunochemical analysis of C-protein isoform transitions during the development of chicken skeletal muscle. Dev Biol 101(1):116–124

    Article  PubMed  CAS  Google Scholar 

  • Padayatty SJ, Katz A, Wang Y, Eck P, Kwon O, Lee JH, Chen S, Corpe C, Dutta A, Dutta SK, Levine M (2003) Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am Coll Nutr 22(1):18–35

    PubMed  CAS  Google Scholar 

  • Palomero J, Jackson MJ (2010) Redox regulation in skeletal muscle during contractile activity and aging. J Anim Sci 88(4):1307–1313

    Article  PubMed  CAS  Google Scholar 

  • Pansarasa O, Bertorelli L, Vecchiet J, Felzani G, Marzatico F (1999) Age-dependent changes of antioxidant activities and markers of free radical damage in human skeletal muscle. Free Radic Biol Med 27(5–6):617–622

    Article  PubMed  CAS  Google Scholar 

  • Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88(4):1243–1276

    Article  PubMed  CAS  Google Scholar 

  • Powers SK, Criswell D, Lawler J, Ji LL, Martin D, Herb RA, Dudley G (1994) Influence of exercise and fiber type on antioxidant enzyme activity in rat skeletal muscle. Am J Physiol 266(2 Pt 2):R375–R380

    PubMed  CAS  Google Scholar 

  • Qiao H, May JM (2011) CpG methylation at the USF-binding site mediates cell-specific transcription of human ascorbate transporter SVCT2 exon 1a. Biochem J 440(1):73–84

    Article  PubMed  CAS  Google Scholar 

  • Rando TA, Disatnik MH, Yu Y, Franco A (1998) Muscle cells from mdx mice have an increased susceptibility to oxidative stress. Neuromuscul Disord 8(1):14–21

    Article  PubMed  CAS  Google Scholar 

  • Rumsey SC, Kwon O, Xu GW, Burant CF, Simpson I, Levine M (1997) Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid. J Biol Chem 272(30):18982–18989

    Article  PubMed  CAS  Google Scholar 

  • Rumsey SC, Daruwala R, Al-Hasani H, Zarnowski MJ, Simpson IA, Levine M (2000) Dehydroascorbic acid transport by GLUT4 in Xenopus oocytes and isolated rat adipocytes. J Biol Chem 275(36):28246–28253

    PubMed  CAS  Google Scholar 

  • Savini I, Catani MV, Rossi A, Duranti G, Melino G, Avigliano L (2002) Characterization of keratinocyte differentiation induced by ascorbic acid: protein kinase C involvement and vitamin C homeostasis. J Invest Dermatol 118(2):372–379

    Article  PubMed  CAS  Google Scholar 

  • Savini I, Rossi A, Catani M, Ceci R, Avigliano L (2007) Redox regulation of vitamin C transporter SVCT2 in C2C12 myotubes. Biochem Biophys Res Commun 361(2):385–390

    Article  PubMed  CAS  Google Scholar 

  • Schiaffino S, Reggiani C (1996) Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev 76(2):371–423

    PubMed  CAS  Google Scholar 

  • Stadtfeld M, Apostolou E, Ferrari F, Choi J, Walsh RM, Chen T, Ooi SS, Kim SY, Bestor TH, Shioda T, Park PJ, Hochedlinger K (2012) Ascorbic acid prevents loss of Dlk1-Dio3 imprinting and facilitates generation of all-iPS cell mice from terminally differentiated B cells. Nat Genet 44(4):398–405

    Article  PubMed  CAS  Google Scholar 

  • Stockdale FE (1992) Myogenic cell lineages. Dev Biol 154(2):284–298

    Article  PubMed  CAS  Google Scholar 

  • Stockdale FE, Miller JB (1987) The cellular basis of myosin heavy chain isoform expression during development of avian skeletal muscles. Dev Biol 123(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Tsukaguchi H, Tokui T, Mackenzie B, Berger UV, Chen XZ, Wang Y, Brubaker RF, Hediger MA (1999) A family of mammalian Na+-dependent l-ascorbic acid transporters. Nature 399(6731):70–75

    Article  PubMed  CAS  Google Scholar 

  • Urso ML, Clarkson PM (2003) Oxidative stress, exercise, and antioxidant supplementation. Toxicology 189(1–2):41–54

    Article  PubMed  CAS  Google Scholar 

  • Wigmore PM, Dunglison GF (1998) The generation of fiber diversity during myogenesis. Int J Dev Biol 42(2):117–125

    PubMed  CAS  Google Scholar 

  • Wilson JX (1990) Regulation of ascorbic acid concentration in embryonic chick brain. Dev Biol 139(2):292–298

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our work has been supported by the Chilean National Science and Technology Fund (FONDECYT) grant 1100326 (to JPH), as well as by the CONICYT ART-24091056 (to DS). DS, JO, and ML are CONICYT fellowship recipients. The authors thank member of our laboratories for useful discussion and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pablo Henríquez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandoval, D., Ojeda, J., Low, M. et al. The vitamin C transporter SVCT2 is down-regulated during postnatal development of slow skeletal muscles. Histochem Cell Biol 139, 887–894 (2013). https://doi.org/10.1007/s00418-012-1075-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-012-1075-4

Keywords

Navigation