Skip to main content
Log in

Arylsulphatase A activity in familial parkinsonism: a pathogenetic role?

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

An Erratum to this article was published on 14 August 2014

Abstract

Cellular mechanism leading to Parkinson Disease (PD) is still unknown, but impairment of lysosomal degradation of aberrant proteins seems to play a crucial role. The most known lysosomal disease associated with PD is Gaucher Disease. However, actually a number of different lysosomal disorders have been linked with PD. We report three families with Arylsulphatase A partial deficit in which we can find a high recurrence of parkinsonism among the siblings. The pedigree members show as well some atypical signs and symptoms among the PD spectrum features. Arylsulphatase A plays a crucial role in protein degradation. Even if a possibly casual association cannot be excluded, it can be speculated that Arylsulphatase A partial deficit can act as a cofactor for neurodegeneration in subjects with other genetic or environmental predispositions to PD or to other neurodegenerative disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Goedert M, Spillantini MG, Del Tredici K, Braak H (2013) 100 years of lewy pathology. Nat Rev Neurol 9:13–24

    Article  CAS  PubMed  Google Scholar 

  2. Trinh J, Farrer M (2013) Advances in the genetics of Parkinson disease. Nat Rev Neurol 9:445–454

    Article  CAS  PubMed  Google Scholar 

  3. Aharon-Peretz J, Rosenbaum H, Gershoni-Baruch R (2004) Mutations in the glucocerebrosidase gene and Parkinson’s disease in Ashkenazi Jews. N Engl J Med 351:1972–1977

    Article  CAS  PubMed  Google Scholar 

  4. Gan-Or Z, Giladi N, Rozovski U et al (2008) Genotype-phenotype correlations between GBA mutations and Parkinson disease risk and onset. Neurology 70:2277–2283

    Article  CAS  PubMed  Google Scholar 

  5. Shachar T, Lo Bianco C, Recchia A (2011) Lysosomal storage disorder and Parkinson’s Disease: Gaucher Disease and beyond. Mov Disord 26:1593–1604

    Article  PubMed  Google Scholar 

  6. Dehay B, Martinez-Vicente M, Caldwell GA et al (2013) Lysosomal impairment in Parkinson’s disease. Mov Disord 28:725–732

    Article  CAS  PubMed  Google Scholar 

  7. Sharma N (2013) Lysosomal enzyme defects and Parkinson disease. Neurology 80:1544–1545

    Article  PubMed  Google Scholar 

  8. Sangiorgi S, Ferini A, Zanetti A, Mochi M (1991) Reduced activity arylsulphatase A and predisposition to neurological disorders: analysis of 140 pediatric patients. Am J Med Genetic 40:365–369

    Article  CAS  Google Scholar 

  9. Martinelli P, Ippoliti M, Montanari M et al (1994) Arylsulphatase A (ASA) activity in parkinsonism and symptomatic essential tremor. Acta Neurol Scand 89:171–174

    Article  CAS  PubMed  Google Scholar 

  10. Gallassi R, Lenzi P, Stracciari A et al (1986) Neuropsychological assessment of mental deterioration: purpose of a brief battery and a probabilistic definition of “normality” and “non-normality”. Acta Psychiatr Scand 74:62–67

    Article  CAS  PubMed  Google Scholar 

  11. Lowry O, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with folin-phenol reagent. J Biol Chem 93:265–275

    Google Scholar 

  12. Baum H, Dodgson KS, Spencer B (1959) The assay of arylsulphatase A and B in human urine. Clin Chim Acta 4:453–455

    Article  CAS  PubMed  Google Scholar 

  13. Sidransky E, Nalls MA, Aasly JO et al (2009) Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med 361:1651–1661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Tayebi N, Callahan M, Madike V et al (2001) Gaucher disease and parkinsonism: a phenotypic and genotypic characterization. Mol Genet Metab 73:313–321

    Article  CAS  PubMed  Google Scholar 

  15. Tayebi N, Walker J, Stubblefield B et al (2003) Gaucher disease with parkinsonian manifestations: does glucocerebrosidase deficiency contribute to a vulnerability to parkinsonism? Mol Genet Metab 79:104–109

    Article  CAS  PubMed  Google Scholar 

  16. Goker-Alpan O, Lopez G, Vithayathil J et al (2008) The spectrum of parkinsonian manifestations associated with glucocerebrosidase mutations. Arch Neurol 65:1353–1357

    Article  PubMed Central  PubMed  Google Scholar 

  17. Neumann J, Bras J, Deas E et al (2009) Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain 132:1783–1794

    Article  PubMed Central  PubMed  Google Scholar 

  18. Setó-Salvia N, Pagonabarraga J, Houlden H et al (2011) Glucocerebrosidase mutations confer a greater risk of dementia during Parkinson’s disease course. Mov Disord 27:393–399

    Article  PubMed  Google Scholar 

  19. Ziegler SG, Eblan MJ, Gutti U et al (2007) Glucocerebrosidase mutations in Chinese subjects from Taiwan with sporadic Parkinson disease. Mol Genet Metab 91:195–200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Marras C, Schuele B, Munhoz RP et al (2011) Phenotype in parkinsonian and nonparkinsonian LRRK2 G2019S mutation carriers. Neurology 77:325–333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Gegg ME, Burke D, Heales SJ et al (2012) Glucocerebrosidase deficiency in substantia nigra of parkinson disease brains. Ann Neurol 72:455–463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Hara T, Nakamura K, Matsui M et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889

    Article  CAS  PubMed  Google Scholar 

  23. Komatsu M, Waguri S, Chiba T et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884

    Article  CAS  PubMed  Google Scholar 

  24. Zhu JH, Guo F, Shelburne J, Watkins S, Chu CT (2003) Localization of phosphorylated ERK/MAP kinases to mitochondria and autophagosomes in Lewy body diseases. Brain Pathol 13:473–481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Alvarez-Erviti L, Rodriguez-Oroz MC, Cooper JM et al (2010) Chaperone- mediated autophagy markers in Parkinson disease brains. Arch Neurol 67:1464–1472

    Article  PubMed  Google Scholar 

  26. Vila M, Bove J, Dehay B et al (2011) Lysosomal membrane permeabilization in Parkinson disease. Autophagy 7:98–100

    Article  PubMed  Google Scholar 

  27. Sanchez-Danes A, Richaud-Patin Y, Carballo-Carbajal I et al (2012) Disease-specific phenotypes in dopamine neurons from human iPS based models of genetic and sporadic Parkinson’s disease. EMBO Mol Med 4:380–395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Xilouri M, Brekk OR, Stefanis L (2013) Alpha-synuclein and protein degradation systems: a reciprocal relationship. Mol Neurobiol 47:537–551

    Article  CAS  PubMed  Google Scholar 

  29. Neudorfer O, Giladi N, Elstein D et al (1996) Occurrence of Parkinson’s syndrome in type I Gaucher disease. QJM 89:691–694

    Article  CAS  PubMed  Google Scholar 

  30. Varkonyi J, Rosenbaum H, Baumann N et al (2003) Gaucher disease associated with parkinsonism: four further case reports. Am J Med Genet 116:348–351

    Article  Google Scholar 

  31. Bembi B, Zambito Marsala S, Sidransky E et al (2003) Gaucher’s disease with Parkinson’s disease: clinical and pathological aspects. Neurology 61:99–101

    Article  CAS  PubMed  Google Scholar 

  32. Halperin A, Elstein D, Zimran A (2003) Increased incidence of Parkinson disease among relatives of patients with Gaucher disease. Blood Cells Mol Dis 36:426–428

    Article  Google Scholar 

  33. Nichols WC, Pankratz N, Marek DK, For the Parkinson Study Group-PROGENI Investigators (2009) Mutations in GBA are associated with familial Parkinson disease susceptibility and age at onset. Neurology 72:310–316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Mitsui J, Mizuta I, Toyoda et al (2009) Mutations for Gaucher disease confer high susceptibility to Parkinson disease. Arch Neurol 66:571–576

    Article  PubMed  Google Scholar 

  35. Duran R, Mencacci NE, Angeli AV et al (2013) The glucocerobrosidase E326K variant predisposes to Parkinson’s disease, but does not cause Gaucher’s disease. Mov Disord 28:232–236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Winder-Rhodes SE, Evans JR, Ban M et al (2013) Glucocerebrosidase mutations influence the natural history of Parkinson’ s disease in a community-based incident cohort. Brain 136:392–399

    Article  PubMed  Google Scholar 

  37. Dermentzaki G, Dimitriou E, Xilouri M et al (2013) Loss of β-glucocerebrosidase activity does not affect alpha-synuclein levels or lysosomal function in neuronal cells. PLoS One 8(4):60674. doi:10.1371/journal.pone.0060674

  38. Kappler J, Watts RWE, Conzelmann E et al (1991) Low arysulphatase A activity and choreoathetotic syndrome in three siblings: differentiation of pseudodeficiency from metachromatic leukodystrophy. Eur J Pediatric 150:287–290

    Article  CAS  Google Scholar 

  39. Suzuki K, Iseki E, Togo T et al (2007) Neuronal and glial accumulation of alpha and beta synucleins in human lipidoses. Acta Neuropathol 114:481–489

    Article  CAS  PubMed  Google Scholar 

  40. Parnetti L, Chiasserini D, Persichetti E et al (2014) Cerebrospinal fluid lysosomal enzymes and α-synuclein in Parkinson’s disease. Mov Disord. doi:10.1002/mds.25772

    Google Scholar 

  41. Murphy KE, Gysbers AM, Abbott SK et al (2014) Reduced glucocerebrosidase is associated with increased α-synuclein in sporadic Parkinson’s disease. Brain 137:834–848

    Article  PubMed Central  PubMed  Google Scholar 

  42. Nuytemans L, Bademci G, Inchausti G (2013) Whole exome sequencing of rare variants in EIF4G1 and VPS35 in Parkinson disease. Neurology 80:982–989

Download references

Conflicts of interest

Authors have nothing to disclosure. Statement: as corresponding author, I can personally guarantee that I asked all the patients for their consent and they all agreed to be video-recorded.

Ethical standard

The study has been approved by the Institution Review Board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Martinelli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (WMV 11419 kb)

Segment 1 (family 1, patient II, 3): neurological evaluation shows resting tremor of right limbs, in particular of the big toe, standing and slow tremor of the right leg, definable as pseudo-orthostatic tremor, diffuse bradykinesia, mainly on right side, and reduced right arm swing.Segment 2 (family 2, patient II, 7): neurological evaluation shows low volume speech, diffuse bradykinesia, increased tone of plastic type to all the extremities predominant on the right side, bilateral postural tremor (not shown), resting tremor of the right arm, orthostatic tremor, barely visible and of high frequency, and gait with reduced right synkinesias.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antelmi, E., Rizzo, G., Fabbri, M. et al. Arylsulphatase A activity in familial parkinsonism: a pathogenetic role?. J Neurol 261, 1803–1809 (2014). https://doi.org/10.1007/s00415-014-7425-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-014-7425-5

Keywords

Navigation