Skip to main content

Advertisement

Log in

Neuronal and glial accumulation of α- and β-synucleins in human lipidoses

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

A number of the lysosomal storage diseases that have now been characterized are associated with intra-lysosomal accumulation of lipids, caused by defective lysosomal enzymes. We have previously reported neuronal accumulation of both α- and β-synucleins in brain tissue of a GM2 gangliosidosis mouse model. Although α-synuclein has been implicated in several neurodegenerative disorders including Parkinson’s disease, dementia with Lewy bodies and multiple system atrophy, its functions remain largely unclear. In our present study, we have examined a cohort of human lipidosis cases, including Sandhoff disease, Tay–Sachs disease, metachromatic leukodystrophy, β-galactosialidosis and adrenoleukodystrophy, for the expression of α- and β-synucleins and the associated lipid storage levels. The accumulation of α-synuclein was found in brain tissue in not only cases of lysosomal storage diseases, but also in instances of adrenoleukodystrophy, which is a peroxisomal disease. α-synuclein was detected in both neurons and glial cells of patients with these two disorders, although its distribution was found to be disease-dependent. In addition, α-synuclein-positive neurons were also found to be NeuN-positive, whereas NeuN-negative neurons did not show any accumulation of this protein. By comparison, the accumulation of β-synuclein was detectable only in the pons of Sandhoff disease cases. This differential accumulation of α- and β-synucleins in human lipidoses may be related to functional differences between these two proteins. In addition, the accumulation of α-synuclein may also be a condition that is common to lysosomal storage diseases and adrenoleukodystrophies that show an enhanced expression of this protein upon the elevation of stored lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Amano N, Yokoi S, Akagi M, Sakai M, Yagishita S, Nakata K (1983) Neuropathological findings of an autopsy case of adult β-galactosidase and neuraminidase deficiency. Acta Neuropathol 61:283–290

    Article  PubMed  CAS  Google Scholar 

  2. Arawaka S, Saito Y, Murayama S, Mori H (1998) Lewy body is neurodegeneration with brain iron accumulation type 1 is immunoreactive for alpha-synuclein. Neurology 51:887–889

    PubMed  CAS  Google Scholar 

  3. Brenz Verca M, Bahi A, Boyer F, Wagner GC, Dreyer JL (2003) Distribution of α- and γ-synucleins in the adult rat brain and their modification by high-dose cocaine treatment. Eur J Neurosci 18:1923–1938

    Article  PubMed  Google Scholar 

  4. Croisier E, Graeber MB (2006) Glial degeneration and reactive gliosis in alpha-synucleinopathies: the emerging concept of primary gliodegeneration. Acta Neuropathol 112:517–530

    Article  PubMed  Google Scholar 

  5. Elleder M, Sokolova J, Hrebicek M (1997) Follow-up study of subunit c mitochondrial ATP synthase (SCMAS) in Batten disease and in unrelated lysosomal; disorders. Acta Neuropathol 93:379–390

    Article  PubMed  CAS  Google Scholar 

  6. Futerman AH, Meer GV (2004) The cell biology of lysosomal storage disorders. Nat Rev 5:554–565

    Article  CAS  Google Scholar 

  7. Goebel HH, Lake BD (1998) Lysosomal and peroxisomal disorders. Recent advances introduction. Brain Pathol 8:73–78

    Article  PubMed  CAS  Google Scholar 

  8. Goedert M (2001) Alpha-synuclein and neurodegenerative diseases. Nat Rev 2:492–501

    Article  CAS  Google Scholar 

  9. Haik S, Privat N, Adjou KT, Sazdovitch V, Dormont D, Duyckaerts C, Hauw JJ (2002) Alpha-synuclein-immunoreactive deposits in human and animal prion diseases. Acta Neuropathol 103:516–520

    Article  PubMed  CAS  Google Scholar 

  10. Hashimoto M, Rockenstein E, Mante M, Mallory M, Masliah E (2001) β-Synuclein inhibits α-synuclein aggregation: a possible role as an anti-Parkinsonian factor. Neuron 32:213–223

    Article  PubMed  CAS  Google Scholar 

  11. Katsuragi T, Iseki E, Kosaka K, Nishimura T, Akiyama H, Ikeda K, Kato M (1996) Immunohistochemical investigation of human leukocyte antigen (HLA)-DR-positive astrocytes in adrenoleukodystrophy brain. Neurosci Lett 219:207–210

    Article  PubMed  CAS  Google Scholar 

  12. Katsuse O, Iseki E, Suzuki K, Kosaka K (2001) Frequency and distribution of TUNEL-positive neurons in brains of dementia with Lewy bodies. Comparison with those in brains of Alzheimer’s disease. Neuropathology 21:272–277

    Article  PubMed  CAS  Google Scholar 

  13. Kumar SS, Buckmaster PS (2007) Neuron-specific nuclear antigen NeuN is not detectable in gerbil subtantia nigra pars reticulata. Brain Res 1142:54–60

    Article  PubMed  CAS  Google Scholar 

  14. Lippa CF, Fujiwara H, Mann DM, Giasson B, Baba M, Schmidt ML, Nee LE, O’Connell B, Pollen DA, St George-Hyslop P, Ghetti B, Nochlin D, Bind TD, Cairns NJ, Lee VM, Iwatsubo T, Trojanowski JQ (1998) Lewy bodies contain altered alpha-synuclein in brains of many familial Alzheimer’s disease patients with mutations in presenilin and amyloid precursor protein genes. Am J Pathol 153:1365–1370

    PubMed  CAS  Google Scholar 

  15. Martinez Z, Zhu M, Han S, Fink AL (2007) GM1 Specifically interacts with α-synuclein and inhibits fibrillation. Biochemistry 46:1868–1877

    Article  PubMed  CAS  Google Scholar 

  16. Marui W, Iseki E, Ueda K, Kosaka K (2000) Occurrence of human α-synuclein immunoreactive neurons with neurofibrillary tangle formation in the limbic areas of patients with Alzheimer’s disease. J Neurol Sci 174:81–84

    Article  PubMed  CAS  Google Scholar 

  17. Marui W, Iseki E, Nakai T, Miura S, Kato M, Ueda K, Kosaka K (2002) Progression and staging of Lewy pathology in brains from patients with dementia with Lewy bodies. J Neurol Sci 195:153–159

    Article  PubMed  Google Scholar 

  18. Matsuzaki M, Hasegawa T, Takeda A, Kikuchi A, Furukawa K, Kato Y, Itoyama Y (2004) Histochemical features of stress-induces aggregates in(α-synuclein overexpressing cells. Brain Res 1004:83–90

    Article  PubMed  CAS  Google Scholar 

  19. Saito Y, Kawashima A, Ruberu NN, Fujiwara H, Koyama S, Sawabe M, Arai T, Nagura H, Yamanouchi H, Hasegawa M, Iwatsubo T, Murayama S (2003) Accumulation of phosphorylated α-synuclein in aging human brain. J Neuropathol Exp Neurol 62:644–654

    PubMed  CAS  Google Scholar 

  20. Saito Y, Suzuki K, Hulette CM, Murayama S (2004) Aberrant phosphorylation of α-synuclein in human Niemann–Pick type C1 disease. J Neuropathol Exp Neurol 63:323–328

    PubMed  CAS  Google Scholar 

  21. Sharon R, Bar-Jaseph I, Frosch MP, Walsh DM, Hamilton JA, Selkoe DJ (2003) The formation of highly soluble oligomers of α-synuclein is regulated by fatty acids and enhanced in Parkinson’s disease. Neuron 37:583–595

    Article  PubMed  CAS  Google Scholar 

  22. Sidhu A, Wersinger C, Moussa CEH, Vernier P (2004) The role of α-synuclein in both neuroprotection and neurodegeneration. Ann NY Acad Sci 1035:250–270

    Article  PubMed  CAS  Google Scholar 

  23. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840

    Article  PubMed  CAS  Google Scholar 

  24. Suzuki K, Yokoi S, Iseki E, Yamada Y, Arai N, Matsushita M (1990) Changes of glycolipids in the human brain after formalin fixation. J Clin Chem Jpn 19:131–135

    CAS  Google Scholar 

  25. Suzuki K, Iseki E, Katsuse O, Yamaguchi A, Katsuyama K, Yamanaka S, Kosaka K (2003) Neuronal accumulation of α- and β-synucleins in the brain of a GM2 gangliosidosis mouse model. Neuroreport 14:551–554

    Article  PubMed  CAS  Google Scholar 

  26. Takeda A, Hasegawa T, Matsuzaki-Kobayashi M, Sugeno N, Kikuchi A, Itoyama Y, Furukawa K (2006) Mechanisms of neuronal death in synucleinopathy. J Biomed Biotechnol 2006:1–4

    Article  CAS  Google Scholar 

  27. Tatematsu M, Imaida K, Ito N, Togari H, Suzuki Y, Ogiu T (1981) Sandhoff disease. Acta Pathol Jpn 31:503–512

    PubMed  CAS  Google Scholar 

  28. Tu PH, Galvin JE, Baba M (1998) Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble alpha-synuclein. Ann Neurol 44:415–422

    Article  PubMed  CAS  Google Scholar 

  29. Ueda K, Fukushima H, Musliah E, Xia Y, Iwai A, Yoshimoto M, Otero DA, Kondo J, Ihara Y, Saitoh T (1993) Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci USA 90:11282–11286

    Article  PubMed  CAS  Google Scholar 

  30. Wenning GK, Jellinger KA (2005) The role of α-synuclein in the pathogenesis of multiple system atrophy. Acta Neuropathol 109:129–140

    Article  PubMed  CAS  Google Scholar 

  31. Wong K, Sidransky E, Verma A, Mixon T, Sandberg GD, Wakefield LK, Morrison A, Lwin A, Colegial C, Allman JM, Schiffmann R (2004) Neuropathology provides clues to the pathophysiology of Gaucher disease. Mol Genet Metab 82:192–207

    Article  PubMed  CAS  Google Scholar 

  32. Yamaguchi A, Katsuyama K, Nagahama K, Takai T, Aoki I, Yamanaka S (2004) Possible role of autoantibodies in the pathophysiology of GM2 gangliosidoses. J Clin Invest 113: 200–208

    Article  PubMed  CAS  Google Scholar 

  33. Yokoi S (1967) Lipidosis—with special reference to metachromatic leukodystrophy and Tay–Sachs disease. Nippon Rinsho Jpn 25:1597–1606

    CAS  Google Scholar 

  34. Zhan SS, Beyreuther K, Schmitt HP (1992) Neuronal ubiquitin and neurofilament expression in different lysosomal storage disorders. Clinical Neuropathol 11:251–255

    CAS  Google Scholar 

  35. Zhu M, Fink AL (2003) Lipid binding inhibits α-synuclein fibril formation. J Biol Chem 278:16873–16877

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. K. Ueda for his generous gift of antibodies, and we are grateful to Dr. Tatematsu and the late Dr. Yokoi for providing additional materials. The present study was supported in part by a Grant in Aid for Scientific Research (No.17790817) from the Japanese Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoko Suzuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, K., Iseki, E., Togo, T. et al. Neuronal and glial accumulation of α- and β-synucleins in human lipidoses. Acta Neuropathol 114, 481–489 (2007). https://doi.org/10.1007/s00401-007-0264-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-007-0264-z

Keywords

Navigation